FEDT: Supporting experiment design and execution in HCI
fabrication research

Valkyrie Savage Harrison Goldstein Nora Pisok
vasa@di.ku.dk hgo@seas.upenn.edu pusoknora@gmail.com
Department of Computer Science, University of Pennsylvania Department of Computer Science,
University of Copenhagen Philadelphia, PA, USA University of Copenhagen
Copenhagen, Denmark Copenhagen, Denmark
Jia Yi Ren Bhaskar Dutt Chandrakana Nandi
jlayiren@ucalgary.ca qml187@ku.dk chandra@certora.com
University of Calgary Department of Computer Science, Certora Inc., and University of
Calgary, Canada University of Copenhagen Washington
Copenhagen, Denmark Seattle, USA
Lora Oehlberg
lora.oehlberg@ucalgary.ca
University of Calgary

Calgary, Canada

@fedt experiment
def test print shrinkage():

cube = VolumeFile ("expt stls/cube.stl")
shrinkage measurements BatchMeasurements.empty ()

for infill pattern in Parallel (['honeycomb','triangles','grid']):
for repetition in Parallel (range(5)):
fabbed_object Printer.slice_and_print (cube,
infill pattern=infill pattern,
repetition=repetition)

shrinkage_measurements += Calipers.measure_size (fabbed_object, "x-z
shrinkage_measurements += Calipers.measure_size (fabbed_object, "
shrinkage measurements += Calipers.measure size (fabbed object, "z-:

summarize (shrinkage measurements.get all data())
experiment-20250303-11034 experiment-20250303-110343
Label infill_pattern Label size: y-axis (mm) size: z-axis (mm) size: x-axis (mmn

0 | honeycomb 1]

GCODE

1 | honeycomb

FEDT_20240813-

095119_...e.gcode 2 | honeycomb

3 | honeycomb

4 | honeycomb

GCODE

FEDT_20240813-

095149...e.gcode 1 | triangles

2 | triangles

3 ftriangles

0

1 1
2 2
3 3
4 4
5 0 | triangles 5
6 6
7 7
8 8
9]

Gcooe
4 | triangles
F| 240813
e.gcode E 0 | grid 10
1 grid 1

Figure 1: The Fabrication Experiment Design Tool (FEDT) helps define and run experiments that involve modifying parameters
of CAD, CAM, fabrication, and post-processing, as well as differing post-fabrication usage. Experiment definitions are created
in code (A), which can be run to create flowcharts (B) that capture either their high-level design or their actual execution. FEDT
can help generate machine files (e.g., gcode) (C) for fabrication (D), as well as measurement support files (e.g., CSVs) to help
execute experiments (E). FEDT is available at https://osf.io/ewuxb/.

Abstract
Fabrication research in HCI relies on diverse experiments to in-
This work is licensed under a Creative Commons Attribution 4.0 International License. form and assess research contributions. However, performance and
UIST °25, Busan, Republic of Korea reporting of these experiments is inconsistent, not only reducing

© 2025 Copyright held by the owner/author(s).
ACM ISBN 979-8-4007-2037-6/2025/09
https://doi.org/10.1145/3746059.3747739

transparency that reassures reviewers and readers of a project’s

https://orcid.org/0000-0002-9478-9705
https://orcid.org/0000-0001-9631-1169
https://orcid.org/0009-0004-9806-6012
https://orcid.org/0009-0006-0029-9251
https://orcid.org/0000-0002-5724-0131
https://orcid.org/0000-0001-8633-8413
https://orcid.org/0000-0001-7216-7895
https://osf.io/ewuxb/
https://creativecommons.org/licenses/by/4.0
https://creativecommons.org/licenses/by/4.0
https://doi.org/10.1145/3746059.3747739

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

rigour but also challenging methods’ replicability by future re-
searchers. We analyze recent fabrication publications to extract a
unified experimental workflow, which we develop into a domain-
specific language, and into the openly-available Fabrication Experi-
ment Design Tool (FEDT). FEDT facilitates designing and executing
HCI fabrication experiments. We demonstrate its comprehensive-
ness by using FEDT to model 42 fabrication experiments from 10
papers, which leverage varied fabrication technologies and tech-
niques, including requiring human intervention in their steps. We
discuss FEDT and our modeled experiments with the papers’ origi-
nal authors to evaluate its precision and utility in real workflows,
and we demonstrate functionality with end-to-end replications of
two published experiments.

CCS Concepts

« Human-centered computing — HCI design and evaluation
methods; Interactive systems and tools; - Software and its
engineering — Domain specific languages.

Keywords

digital fabrication, experiments, domain-specific language, interac-
tive object fabrication workflow

ACM Reference Format:

Valkyrie Savage, Harrison Goldstein, Néra Piisok, Jia Yi Ren, Bhaskar Dutt,
Chandrakana Nandi, and Lora Oehlberg. 2025. FEDT: Supporting experi-
ment design and execution in HCI fabrication research. In The 38th Annual
ACM Symposium on User Interface Software and Technology (UIST °25), Sep-
tember 28-October 1, 2025, Busan, Republic of Korea. ACM, New York, NY,
USA, 69 pages. https://doi.org/10.1145/3746059.3747739

1 Introduction

Since the first UIST session on “Fabrication and Hardware” in 2012,
digital fabrication has become a booming area in Human-Computer
Interaction (HCI) research, with seven paper sessions and two late-
breaking work sessions devoted to it at CHI *24, and three paper
sessions at UIST ’24, alongside panels [19], journal articles [8], and
workshops [86]. These publications cover a broad range of tech-
niques and applications for digital fabrication, like low-cost 3D
displays made on a laser cutter [25] and graph-based manipula-
tions of knitting patterns [35]. A core part of this type of technical
research is experiments, in which researchers create fabricated arti-
facts under different conditions and subject them to controlled tests
to measure their behaviour. This stands in contrast to “experimen-
tation,” a less-structured method by which authors try out different
designs or settings to find a combination that works at all: we fo-
cus only on experiments here. Experiments are key to exploring
underlying concepts, generalizability, and replicability of technical
contributions and form part of the ever-growing knowledge base
in the field: e.g., will it work with my laser cutter? What if I rotate
90° before 3D printing? Could I reliably build my next research
paper based on what this paper claims to achieve?

As we will see, experiments are incredibly diverse in their struc-
ture and purpose. However, there are universal assumptions and
challenges in experimental design, some of which have been ex-
plored by prior work. For example, researchers in HCI outside of
fabrication have built systems that structure hypotheses for user

Savage, et al.

studies [73], scaffold pre-registrations [58], or infer appropriate
analyses from datasets [40]. In fields like molecular biology that
require rigorous process standardization, end-to-end design and
management frameworks! support scientists in defining, replicat-
ing, and sharing processes. These techniques lead to better quality
science and a greater sense of openness and transparency in meth-
ods. In software, toolmakers have created platforms? to capture
data, metadata, analysis code, computational environments, and
more all in one location: this enables straightforward re-execution
and replication of virtual experiments. However, it is not obvious
how to facilitate similar transparency for interactive object fabrica-
tion workflows that are increasingly common across HCI fabrica-
tion research: merely uploading design files to share repositories,
generating user study designs [58, 73], and maintaining data and ex-
perimental analysis scripts? is not sufficient—transparency requires
maintaining a choreographed series of executions by humans, ma-
chines, and software, mediated through physical and virtual objects.
Our work lays foundations for making fabrication work replica-
ble and more transparent by leveraging the common structure of
interactive object fabrication workflows to clearly describe and
automate best practices for researchers (Figure 1).

Based on an examination of prior fabrication research, we de-
scribe a common computational fabrication workflow (Figure 2) that
is the starting point for all types of technical validation experiments
in fabrication. Researchers digitally manipulate geometry, specify
materials, adjust machine settings, then fabricate required objects
from digital files, using digitally-controlled machinery. Then, once
the object is completed, it can be post-processed, manipulated by
users and subjected to tests. Data from tests are recorded, quantita-
tively analyzed, transformed into digital graphs, and reported in
digital conference proceedings along with supplementary materials.

As HCI researchers, we are drawn to the interfaces between the
human and these digital processes during this research practice.
Humans participate at several points: to plug gaps in machinery
or infrastructure (e.g., to assemble ruffles [76]), as a comment on
mechanization (e.g., by being the machine [18]), or as a source of
noise in the experiments themselves (e.g., due to different users’
capacitive properties [71]). Supporting and cataloging the rich,
diverse experiments of the fabrication community while harnessing
their essential digital nature benefits replicability, and therefore
the growth of this vibrant research area. At present, there is no
tool or vocabulary that explores designing, executing, and sharing
experiments in this area. One opportunity for doing so is to leverage
a Domain-Specific Language (DSL).

It is in this spirit that we create FEDT: the Fabrication Experiment
Design Tool. FEDT is based on a DSL embedded in Python which
allows researchers to specify experiments they aim to perform. This
is conceptually similar to Open Science pre-registration tools—as
the researcher specifies exactly which variables will be controlled,
what will be done, and what will be measured—but FEDT supports
designing and actually executing the experiment process. Using our

le.g., SnapGene https://snapgene.com or LabGuru https://labguru.com

2e.g., Whole Tale https://wholetale.org, Renku https://renkulab.io/, and ReproZip
https://reprozip.org/

3e.g., Thingiverse https:/thingiverse.com

4e.g., with the Open Science Foundation https://osf.io/

https://doi.org/10.1145/3746059.3747739
https://snapgene.com
https://labguru.com
https://wholetale.org
https://renkulab.io/
https://reprozip.org/
https://thingiverse.com
https://osf.io/

FEDT

language, researchers can define experiment workflows that com-
bine user instructions with commands for modeling or toolpathing
software and machines into varied loop structures. The language
maintains relationships between fabricated objects and references
in the code, helping users keep track of the moving parts of their
experiment. The FEDT library prototype focuses on workflows with
3D printers and laser cutters available in our labs, but it is designed
to be extensible to support new modeling programs and machines.

We demonstrate and reflect on modeling 42 experiments from
10 papers using FEDT, and discuss the results of presenting these to
researchers behind the papers. At a high level, researchers strongly
appreciated the FEDT concept, with concrete ideas on how they
would use it for clearer explanation in future papers, for creating
“contracts” with students running experiments, and for speeding up
their own workflows. We also describe the types of mistakes that we
made in modeling, based on these author conversations, and reflect
on what this means for FEDT. We further show end-to-end function-
ality by manufacturing objects supporting two of the experiments
using FEDT in our lab. Finally, we discuss a broad opportunity for
future work in DSLs for fabrication tools and Open Science, and
the social processes that need to accompany the technology.

Our contributions are thus:

e FEDT: a modular system leveraging a domain-specific lan-
guage to support researchers in designing and implementing
fabrication experiments

o An evaluation of FEDT, including modeling and executing
published experiments through the tool, and reflections from
expert fabrication researchers

FEDT is openly available at https://osf.io/ewuxb/. We are eager
to see its application in future research papers, and for the UIST
community to expand upon it.

2 Interactive Object Fabrication Workflow

Despite a breadth of approaches and techniques for both manual
and digital fabrication, there is a similar fabrication workflow that
people and machines follow to go from concept to object. This
workflow becomes particularly salient in the context of experiments,
as it becomes clear that each step is an opportunity for innovating
new systems, or performing a technical validation.

To understand the variety of ways that fabrication researchers
work, we informally surveyed a wide variety of fabrication papers
from CHI, UIST, and TEI, which we used to adapt an existing fabrica-
tion workflow model [52] to interactive object fabrication(Figure 2,
top left). This workflow encapsulates what we observed in the sam-
ple and our collective experience as fabrication and engineering
design researchers, and helps us understand the space of possible
sites for fabrication operations, interventions, and experimental
measurements that we can support using a tool.

To ensure the validity of the workflow, we then applied it to a pur-
posive sample of 19 fabrication research publications— intentionally
selecting representative papers with unique workflows and diverse
fabrication techniques (3D printing [9, 20, 31, 50, 69, 71, 83, 87],
CNC milling [46], plotter cutting [44], inkjet printing [43], laser
cutting [9, 25, 39, 76, 85], knitting machines [35], moulding [31, 85]);
we also selected three papers where the contribution itself was a
new fabrication platform [38, 55, 77] (see Figure 2). This sample is

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

not intended to be representative of fabrication research in HCI,
but instead curated to challenge assumptions and test at the fringes
of emerging research.

2.1 Workflow Phases

We define each workflow phase by the user-provided input as well
as the machine-provided artifacts. “User-provided input” may be
manually specified, or could come from a selected sensor or other
external process or system which reflects the user’s needs.

o Design. The user specifies the geometry of the object(s) us-
ing Computer-Aided Design (CAD) software, such that the
system can generate and export digital geometries (e.g., .stl,
.svg, knitout).

o Configuration. The user provides material specifications to
Computer-Aided Manufacturing (CAM) software; the system
provides configuration settings (e.g., .config, .dat).

o Toolpathing. The user provides machine-specific parameters
to CAM software; the system slices a model and/or generates
toolpaths (e.g., .gcode, .000).

e Fabrication. The user physically configures the fabrication
hardware so it is ready to create a part. The system runs
configuration and toolpathing files on the machine, resulting
in one or several parts of an artifact.

o Post-Processing. The user removes the fabricated object from
the machine and performs any necessary post-processing.
This may include cleaning up parts from the machine, assem-
bling multiple fabricated or off-the-shelf parts, or performing
finishing or surface treatments. This results in the final arti-
fact or object.

o User Interaction. Users interact with the completed object,
and evaluate it according to performance criteria.

2.2 Research Intervention in the Fabrication
Workflow

We found that research innovation can come at any stage in the
pipeline, and that to support evaluation of these contributions, re-
searchers also introduced experimental variables at every stage in
the pipeline. That is, some experiments manipulate geometry (Knit-
Picking Textures measures perceived similarity of varied-width
knitted star patterns [35]), while others manipulate materials (Soft
Inkjet Circuits explores several components for inks [43]), ma-
chines (Kerf-Cancelling Mechanisms fabricate their designs on both
laser cutters and CNC machines [64]), CAD configurations (A-Line
manipulates slicing angle [83]), post-process treatments (spaceR
examines the effect of washing on their textile sensors [3]), or inter-
actions (Truscillator perform several kinds of rocking on completed
playground equipment generated by their tool [45]).

2.3 Identifying Workflow Variations via
Descriptive Model

We offer this workflow as a descriptive model, not a prescriptive

one. We present visualisations of 9 papers’ described processes

[9, 31, 35, 44, 46, 48, 50, 55, 77] (Figure 2)—we selected papers which

used varying fabrication technologies and particularly unusual

workflows, which could challenge the model and show unique

https://osf.io/ewuxb/

Generic Interactive Object
Fabrication Workflow (ours)

UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

3D Print -
Robiot
(Li, et al., 2019)

Laser Cut -
LamiFold
(Leen, et al., 2020)

Savage, et al.

Knit -
KnitPicking Textures
(Hoffman, et al., 2019)

Ceomety ol ccioni SRUKGGILN Design in nssemblageof [N RN knitspeak
Digital ign in Object LamiFold Textures Validate
Geometry (Fusion) At ot
o I T |
Specifcation (fdm_material) (g, xm) " (Configuration Tamm et Create

@Te [V ile]y Configuration
Settings

;)

Ultimaker 5

Configuration
& Toolpath
in, e.qg.,
VisiCut

Laser Spec
(eg, xml)

Instruct

geode

Specification Yarn

Gauge
Swatch

[=X
KnitPaint

Shima Seiki

Machine ‘Sse;iﬁcal'ion SWG9IN2
Specification (defjson 15-gauge v-bed needles
Toolpath Stitch size 40

File

Physical ' Fabrication
Machine Load filament eg, Setfocus Load yarn into
Configuration .. Clear bed icati Clear bed i | tensi
Fabrication s Fabrication carriages manual tension
Parts on UM5
Off-the-Shelf D Motors, Wires, 3 j
Components Post- final Clamps, etc. Assemble, fnal None Other knit pieces Lay out,
Processing e Attach object final Assemble
object
Performance Matchto Match to j Match to
Criteria User Goal Motion Actuate Goal Motion Actuate

Interaction

3D Print + Mould -
Design, Mould, Grow!
(Gough, et al., 2023)

Envisioned
Geometry

Design,
Adjust in
Custom Tool

PLA
Specification

Ultimaker 5

Object

CNC Mill -
Tsugite
(Larsson, et al., 2020)

Envisioned
Geometry

Design,
Config,
Toolpathing
in

Wood
Specification

Step-wise

Object

Plotter Cut -
Interactive Bioplastics
(Koelle & Nicolae, et al., 2022)

Envisioned Design in
Geometry
eg.,
InkScape

Deep Point Conﬁguratio
Material Spec

PLA

Envisioned
Geometry &
Fideli

Specification

Leading set 25

Ideal Pattern

Laser Cut + 3D Print -
Platener
(Beyer, et al., 2015)

Design in
Platener

Plywood Spec
(e.g, xml)
Configuration,
Laser Spec
(g, xm)

Specification T Tsugite Cricut Maker 3, Ultimaker 5
(defjson) m‘i:g Bit Brother ScanNCut Specification
CM350 spec (defjson) eg. Setfocus

Load filament
Clear bed

Substrate, Spores SN
Sterilizers Sterll!se, Mould
Await Growth,

Demould RS

Match to D

Goal Shape Actuate

Object

Load wood

° Fabrication
Set origin

on, eg.,
Shaper

Assemble

Effectiveness
of Joint

»

final
object

Cast/dry material
Acetate backing .
Deep point blade RRGRMA I

on Maker3,

Wires
Extra layers

Weeding,
Layering

Match to
Goal

Load filament
Clear bed

Match to
Goal Shape &
Function

Add material

Fabrication Heat gun

Assemble

Custom CNC Pottery Wheel - Custom CNC Pottery Wheel - Custom CNC Pottery Wheel - Custom CNC Pottery Wheel - Weave -
Throwing Out Conventions Throwing Out Conventions Throwing Out Conventions Throwing Out Conventions SPEERLoom
(Moyer, et al., 2024) (Moyer, et al., 2024) (Moyer, et al., 2024) (Moyer, et al., 2024) (Speer, et al., 2023)

Flow 1: Wheel Throwing

Envisioned

Input

Flow 2a: Printing from GCode

Envisioned

Flow 2b: Assisted Manual Printing

Iterative

Flow 2c: Record/Replay

Envisioned

Envisioned

(optional)
Geometry
—

Any gcode Design in

i i i G t

Geometry : Geometry Design in cvsioned Fabrication ey created from e.g., Weavelt

to Physical e.g. Rhino Geometry .g.,

= on DPW

Load clay .gcode Yarn Desi n and/o!

Clear wheel Input to Load cl Specification 9
Clay Physical Ul oad clay i Adjustment
Load/wet clay, Hand % Clear wheel jjustment,

Shape clay
Drication form

Remove from
wheel, dry,
glaze, fire

Match to
Goals

Custom
Machine Spec

Specification

onfiguration
and

Toolpathing

in CoilCAM

Load filament
Clear bed

Fabrication

wheel, dry,
glaze, fire

Glaze

BBl Remove from|
Other material

wheel, dry,
glaze, fire

Match to
Goals

Fabrication

on DPW Configuration,)

Toolpathing

#motors, in

—— SPEERLoom

Remove from
wheel, dry,
glaze, fire

Calibration

Add yarns Weave on

SPEERLoom

Remove
from
Bed

final
object

Match to

Match to Ideal Geometr

Goals

Figure 2: Our proposed workflow for fabrication of interactive objects (upper left) can be applied to diverse fabrication papers.
This highlights how messy the workflow can become in reality. The presence of “e.g” means the paper did not specify the exact
program or filetype.

FEDT

paths through it. In doing so, we observed intriguing variability,
especially where workflow steps are not clearly separated.

Transitions between workflow steps may be an “implicit”
action. For example, when a hand knitter selects a knitspeak pat-
tern to fabricate [35], they implicitly (or, rarely, explicitly) perform
configuration (e.g., adjusting the chosen needles or the tension at
which to knit) and toolpathing (i.e., choosing which techniques to
use to achieve the pattern). There are usually no digital file handoffs
between these steps, although some knitters do make notes.

As a result, software tools may merge multiple workflow steps,
without explicitly handing off intermediate files. Particularly when
proprietary software or drivers control fabrication machines, steps
in the fabrication process are concealed from the end-user. For
example, many laser cutters perform configuration, toolpathing,
and initialization of fabrication within a single software driver.
Other example include older open-source tools (e.g., Slic3r°) that
do not follow best practices, or when researchers develop custom
software tools tuned to a specific machine or workflow like Tsugite
[46], where the geometric design is tied closely to the possible
manufactured tolerances with a given CNC bit.

Workflow steps may be iterative. In many cases, user inter-
action takes place as a part of a workflow step, or as part of an
iterative handoff between steps. For example, in LamiFold [48],
users repeatedly call fabrication steps while following generated
instructions to add new material to the laser cutter bed: a blend of
"fabrication" and "post-processing” where humans plug a gap in
what a theoretical machine could do. A more extreme case of this is
in Throwing Out Conventions [55], where there is a “Choose Your
Own Adventure® flavour to how the workflow steps are accessed,
allowing users to make or remake parts of an object by returning
to earlier workflow steps.

Workflows can fork. In some cases, fabrication is carried out
by multiple machines in parallel, as a design is broken up and
assembled later. This happens, for example, in Platener [9], where
a 3D model is split into some parts for laser cutting and some parts
for 3D printing in order to speed up overall fabrication.

Workflow steps may be replaced by simulation. In some
projects, part of the research contribution is to create a system that
predicts what will happen when, e.g., a slicer is run with particular
settings [83], or that compares many more objects than could prac-
tically be fabricated [20]. In these cases, some physical workflow
steps are replaced with virtual workflow simulations.

Workflow steps are not all described in publication texts.
To keep focus on the parts of the workflow that are critical to their
contribution, we found many authors neglected to add details of
specific tools used or workflows followed. We posit that this is re-
lated to a high base-level knowledge in the community of how these
workflow steps are executed “in general,” which allows readers to
follow along without all details. However, this may mean that, as
programs and technologies evolve, actually precisely replicating
artifacts becomes impossible, particularly when they unwittingly
rely on defaults or algorithms hidden in specific programs.

These flows and their variations, which we do not believe are
exhaustive, strongly suggest that the generic workflow is present in

Shttps://slic3r.org/about/
Shttps://en.wikipedia.org/wiki/Choose_Your_Own_Adventure

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

and adequate to describe interactive fabrication in published works,
but that there is significant flexibility in how it is performed.

2.4 Design Goals for a Tool to Support the
Workflow

Based on this exploration, we set out to create a tool for fabrica-
tion researchers to design, perform, and communicate their varied
technical experiments. We designed the tool with the following key
goals in mind:

e Precision: the tool should enable researchers and their col-
leagues to understand exactly what should be or was per-
formed in experiments at design time, at execution time, and
in reporting.

o Comprehensiveness: the tool should be able to capture any
experiment that fits into the digital fabrication workflow—
including those that mix human and machine actions, and
that have partial or unclear step separation.

e Extensibility: the tool should not be locked to specific fabri-
cation technologies; it should have a core set of operators
and structures that make it sufficiently expressive while fa-
cilitating the addition of extra features required for novel
machines and tasks.

o Analysability: the tool should enable analysis of experiment
structures, including identifying potential failures early and
leveraging common structure in related experiments.

Given these goals, we settled on an embedded domain-specific
language (DSL) as an appropriate base. A programmatic view of
fabrication experiments facilitates composability—programs in any
DSL let users string together many statements in various ways that
best match their mental models or particular setups. Comprehensive-
ness is also supported by using a language: the sample workflows
blend and iterate on stages of the generic workflow, and a language
(more so than a rigid tool) supports researchers in expressing the
workflow needed for their software, machine, and task. DSLs also
offer formal benefits: programs are easy to analyze statically by
traversing their abstract syntax tree or their control flow.

Embedding a DSL within a host language also allows researchers
to use existing toolchains (e.g., code editors, source and library man-
agers) to interact with or design in it and to extend its capabilities,
as well as to track provenance (e.g., through github forking and
other metadata). For our host language, we chose Python. Previous
(small) studies have found Python is an especially readable lan-
guage, even for non-programmers [2], which supports our goal of
precision. A text-based DSL offers the further convenience of being
easily-included in textual reporting documents (e.g., publications).

3 FEDT

FEDT is a language for orchestrating fabrication experiments that
helps researchers capture subtle details of their experimental de-
signs, ensuring that the execution of the experiment agrees with the
way that it is communicated to other researchers. It is implemented
as an embedded DSL (eDSL) in Python. Below, we give an overview
of the different parts of FEDT with an extended example, explore
the core features of FEDT, and describe key implementation details.

https://slic3r.org/about/
https://en.wikipedia.org/wiki/Choose_Your_Own_Adventure

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

3.1 Extended Example

The FEDT language lets researchers program experiments the same
way they would program any other step-by-step process. The inten-
tion is that a researcher can write the experimental method, then
evaluate whether it is adequate for the test they want to perform.
After evaluation, the researcher (or a colleague) can execute the
method using the same code. The program can later be published as
part of a paper, documenting what has been done in the experiment
to facilitate replication by future researchers. To demonstrate the
features of FEDT, we show a simple experiment to measure the
shrinkage of 3D printed cubes when using different infill patterns.

The simplest step of a FEDT program is an instruction, which
communicates critical steps of the experimental execution. For
example, the following line instructs the researcher to ensure that
a design file for the experiment is in the correct location:

instruction("Create an STL file of a cube at “cube.stl™.")

Instructions can be listed one after another, in sequence:

instruction("Create an STL file of a cube at “cube.stl™.")
instruction("Print the object...")

And they can be interleaved with actual computation that is neces-
sary for the experiment:

instruction("Create an STL file of a cube at “cube.stl™.")
cube = GeometryFile("cube.stl")
instruction("Print the object...")

The new line above actually looks on the researcher’s computer
for the cube.stl file and prepares it for use in a later stage of
the experiment. In essence, instructions in FEDT programs can
give direction to humans (either the researcher performing the
experiment, or a user taking part in it), or to machines and systems
(in this case, the filesystem, or in other cases a laser cutter, knitting
machine, slicer, etc.).

Programs can also contain loops. For example, we can add nested
for loops that interface with a 3D printer and print a collection of
cube objects we want to measure:

instruction("Create an STL file of a cube at “cube.stl™.")
cube = GeometryFile("cube.stl")
instruction("Print the objects...")
objects = []
for infill_pattern in Parallel(['concentric','line', 'rectilinear']):
for print_rep in Parallel(range(5)):
fabbed_object = Printer.fab(cube,
infill_pattern=infill_pattern,
repetition=print_rep)
objects.append(fabbed_object)

These for loops work just as they would in standard Python,
but FEDT offers Parallel wrappers so the researcher can specify
that these steps can be done in any order. (If order matters, the
Series wrapper can be used instead.) Each loop iteration can also
issue instructions to the researcher; for example, the Printer. fab
function might instruct them to ensure the printer is set up in a
particular way.

Next we highlight the objects list: the result of running a 3D
printer is not bits in a computer, it is a “thing” in the physical world
that you can see and touch! Indeed, this is part of what makes fab-
rication experiments special—they regularly involve turning data
into physical objects and vice versa. The FEDT language bridges
the gap between virtual and physical by maintaining virtual objects

Savage, et al.

mirroring each physical one that is fabricated. In this case, fab re-
turns a RealWorldObject each time it is called; this virtual object
can be passed around and used in later experiment stages:
instruction("Create an STL file of a cube at “cube.stl™.")
cube = GeometryFile("cube.stl")
instruction("Print the objects...")
objects = []
for pat in Parallel(['concentric','line', 'rectilinear']):
for print_rep in Parallel(range(5)):
fabbed_object = Printer.fab(cube,
infill_pattern=pat,
repetition=print_rep)
objects.append(fabbed_object)
shrink_measures = BatchMeasurements.empty()
for obj in Parallel(objects):
for meas_rep in Series(range(5)):
shrink_measures += Calipers.measure_size(obj, "x-axis")
shrink_measures += Calipers.measure_size(obj, "y-axis")
shrink_measures += Calipers.measure_size(obj, "z-axis")
analyze(shrink_measures.get_all_data())
We will discuss how BatchMeasurements works in the next section,
but at a high level these new lines express that the researcher should
measure each axis of each printed cube (referenced by an obj) sev-
eral times. After all measurements are logged (shrink_measures
represents shrinkage measurements), an externally-defined Python
script can analyze the final results.

With their full experiment drafted, the researcher can run it.
To begin with, they can create a flowchart by running in Design
mode (Figure 1b). This creates an incomplete but instructive vi-
sualization of the procedure they will follow, and calculates how
many objects they will create and how many measurements they
will perform (or a floor for these, in the case of a while loop that
will repeat an unknown number of times during execution). When
they are satisfied with the structure, they can switch to Execute
mode, which actually creates and manipulates files (in this case,
gcode files for printing and a CSV file for data collection), creates
prompts on the command line to instruct them to set up prints or
measure particular objects, and makes calls to machines (e.g., the
3D printer) (Figure 1D). A complete flowchart is constructed during
execute mode, with additional details capturing precisely what was
done. analyze is an abstraction researchers can implement to fur-
ther study data gathered, including using other statistical analysis
tools [40, 41].

3.2 The FEDT Language

FEDT’s several components each support a different aspect of the
user experience.

3.2.1 Runtime. FEDT is implemented as a Python decorator that
wraps and rewrites experiment code written in Python. The deco-
rator instruments the code with calls into the FEDT runtime (the
background process of the language) that track the experiment’s
steps as they are executed. Instructions, loops, and other language
features are all tracked as elements crucial to later replication.

After execution, the runtime outputs a flowchart that communi-
cates the instructions and control flow comprising the experiment.
This can be visualized directly (e.g., put in a paper’s appendix) or
otherwise used to aid replicability.

The FEDT language combines experimental design and experi-
mental execution into a single language. While we have discussed
many ways in which this is advantageous, it can make the design

FEDT UIST 25, September 28-October 1, 2025, Busan, Republic of Korea

@fedt_experiment
def test force at break():
breakage points = BatchMeasurements.empty ()

for rect length in Parallel (arange(50,100+include last,25)):
svg = SvgEditor.build geometry(draw rect, CAD vars={'rect length':rect length})
for material in Parallel(['wood', 'acrylic']):
fabbed object = Laser.fab(svg, material=material)
instruction ("place the object with lcm overlapping a shelf at each end and the remainder suspended")
instruction("place weights on the object until it breaks")
breakage points += Scale.measure weight (fabbed object,"total weight placed at break")

analyze (breakage points.get all data())

@fedt experiment
def test paint layers():
flower = Laser.fab(LineFile('flower.svg'), material='wood"')

photos = ImmediateMeasurements.empty ()
is reasonable = False
coats of paint = 0

while not is_reasonable:
flower = Human.is reasonable (flower)
photos += Camera.take picture(flower)
is_reasonable = flower.metadata["human reasonableness check"]
if not is_reasonable:
coats of paint = coats of paint + 1
flower = Human.post process(flower, f"add a {coats_of paint}th coat of paint")

analyze (photos.dump_to_csv())

@fedt experiment
def test user assembly time():

simple = VolumeFile("simple assembly.stl")
complex = VolumeFile ("complex assembly.stl")
timings = ImmediateMeasurements.empty ()

treatments = shuffle(["simple first","complex first"])

for (user, treatment) in Parallel (enumerate (treatments)) :
simple assembly = Printer.slice and print(simple)
complex assembly = Printer.slice and print (complex)

order = []
if treatment == "simple first":
order = [simple assembly, complex assembly]
else:
order = [complex assembly, simple assembly] ,

for assembly in Series (order):
assembly = User.do(assembly, "solve the assembly", user)
timings += Stopwatch.measure time (assembly, "time to solve the assembly")

analyze (timings.dump to_csv())

Figure 3: Each program defines a flowchart based on the structures within. Parallel structures (top) spread out and can be
executed in any order. while structures (middle) create loops to be executed as long as a condition is true. Series structures
(bottom) require that steps be executed in a particular linear sequence.

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

and testing process fairly tedious. FEDT addresses this with Design,
a mode of operation where execution engines are disabled but the
runtime (and other simple computations) continues to execute. For
many experiments, this process can produce a faithful represen-
tation of the experiment flowchart without actually running the
experiment, giving the user insights into how their experiment will
execute and allowing them to catch potential problems (e.g., missing
steps or incorrect setup) before running it.

In the parlance of the cognitive dimensions of notations [10],
design mode increases progressive evaluation and reduces error-
proneness. In a few cases, for example with while loops where the
number of executions depends on a measurement, Design mode
must approximate the experiment execution, but even that approx-
imation has information that can help users avoid design flaws.

Design mode is implemented as a global flag in Python; execu-
tors are expected to obey this flag and produce no-op results in
design mode, whereas the rest of the experiment code (including
the runtime) can continue to operate.

3.22 Looping, branching, and randomness. FEDT supports several
kinds of loops that we observed in our dataset. Parallel loops
represent operations which can be executed in any order; for exam-
ple, in the shrinkage study, it does not especially matter whether
the cube with rectilinear infill is printed before or after the one
with concentric infill. Series loops, on the other hand, describe
operations which must be executed in a specific order but are per-
haps also based on variables; for example, in a user study (Figure 3,
bottom), users may be required to first assemble one object and
then another. In cases where the researcher chooses to counter-
balance or randomize ordering of these types of operations, FEDT
also offers a shuffle operator. The shuffle operator knows about
Design mode, so it is able to produce a deterministic order while de-
bugging. Finally, FEDT supports while loops, which execute until
some condition is fulfilled (Figure 3, middle). This type of structure
allows for arbitrary numbers of repetitions as researchers explore
optimization of parameters in designs.

In Execute mode, a researcher interacts with these loops on the
commandline one step at a time, completing a full branch each
time. While in theory they could jump around and, e.g., run parts
of Parallel loops in parallel, we have left this to future work.

To render flowcharts visually, we use graphviz. We reduce the
horizontal and vertical size of large experiment flows by collapsing
and eliding long or wide repetitive loops, and further collapsing
arithmetic and geometric sequences detected in loop variables.

3.2.3 Object Tracking. Another core goal of FEDT is to reduce
the potential of researcher error when executing (and replicating)
experiments. One potential source of error is losing track of the
relationship between objects in the experiment code, which dictate
the way analysis is carried out, and objects in the real world or on
the file system. For example, in the previous section we describe
an experiment in which the researcher has to print many visually
identical (yet different!) cubes; if they get those cubes confused,
they may confuse their measurements and get incorrect results.
To address this issue, we introduce Python data for tracking
physical items (using the RealWorldObject class) and virtual “ren-
derings” of information like output geometry from a modeling tool
(using the VirtualWorldObject class). Each of these objects has

Savage, et al.

a unique identification number and stores information about how
the object has been manipulated over time.

To connect the software concept of a RealWorldObject to the ac-
tual real-world object it refers to, FEDT s library introduces optional
pre-fabrication geometry manipulation functions for automatic la-
beling. FEDT executors can automatically add a RealWor1ldObject’s
unique id number to the object itself (e.g., etched into the object
with a laser cutter) or as a mark somewhere nearby the object (e.g.,
printed onto a 3D printer bed next to the object’s model). When the
researcher post-processes or measures an object, they can double
check the id number to ensure that they are interacting with the cor-
rect object. During a run, FEDT outputs a CSV that researchers can
use to connect a RealWorldObject’s provenance to a real world
object’s id (Figure 1E).

3.24 Measurements. FEDT also provides researchers with tools
that streamline measurement collection in batches or singly. The
ImmediateMeasurements class has researchers input one measure-
ment at a time on the commandline, and when they are done it
collates the measurements and their associated objects into a dict
object for further analysis. The BatchMeasurements class (used in
the shrinkage example) allows more flexibility. Instead of perform-
ing sequential, single measurements as objects are created, this
enables researchers to create many objects and then input measure-
ments en masse to a generated CSV file. The CSV file contains rows
for each RealWorldObject (or VirtualWorldObject)and columns
for each measurement. The measurement file is “blinded” and refers
to each object by its unique id, so a second CSV which connects
ids to provenance is also generated (1E). When the researcher is
done filling out the CSV file, it is read in and again turned into a
dict that can be analyzed. Multiple, repeated measurements can
be recorded for a single object and feature for later averaging.

3.3 The FEDT Library

While FEDT and its runtime offers sufficient flexibility for express-
ing experiments, the FEDT language does not actually implement
the machinery to operate fabrication machines, interact with CAD
programs, and carry out other more automatic steps of the exper-
iment workflows. These tasks are handled by external code and
called via the FEDT library.

3.3.1 Executors. Automation for interfacing with workflow soft-
ware and machines is implemented as executors; these are functions
in the host language—Python—that call external functionality. Cur-
rently, FEDT provides a small library of executors that can either be
used directly or adapted to work with a user’s particular lab setup.
The design of executors in FEDT means that any Python-accessible
API already provided by researchers’ machines, software, and tools
can be re-used as part of FEDT experiments. Since the executors
are designed to be separate from the language, it is possible to run
an experiment with no executors, and just a sequence of manual
instruction calls for a human to perform manual actions. We
detail some executors implemented for our own lab in Section 4.1.2.

3.3.2 Encoding Workflow Steps in FEDT Executors. Our library pro-
vides a collection of structural abstractions that researchers can

FEDT

use to ensure workflow steps are followed, e.g., to explicitly hand
a GeometryFile to a ToolpathSoftware and get a CAMFile, or a
CAMFile to a FabricationMachine and get a RealWorldObject.
These structural abstractions are implemented as classes, and
Python’s multi-inheritance capabilities mean that custom researcher
code can serve as DesignSoftware, ConfigurationSoftware, and
ToolpathSoftware all at once, as in SpeerLoom’s custom GUI [77]
(Appendix A.10). This can also help researchers clarify what func-
tion(s) are fulfilled by their custom code or hardware.

3.3.3 Measuring. Measurements are handled by classes instanti-
ated to describe a measurement tool. These classes describe the
Measurement that the tool can provide, including its name, units,
procedure, and the feature on the object that it describes. The
class must also implement a measure function that returns a struc-
tured Measurement. Some tools can provide more than one type
of measurement (for example, a multimeter can provide resistance,
capacitance, and other values).

3.3.4 The Host Language. Embedding FEDT in Python lets re-
searchers use normal Python code as executors to aid in the ex-
periment process, or integrate libraries to reduce the amount of
code they must write themselves. For example, an experiment can
use basic Python or psychopy [59] to generate a Latin square for
counterbalancing (e.g., in ./trilaterate [71], Appendix A.1). Integra-
tion with the host language can also be used to call out to external
processes or languages for data analysis, to interface with a running
experiment in a notebook environment, or to use existing tools to
generate documentation for their experiments from comments.

4 Evaluating FEDT

To evaluate FEDT’s capabilities, we modeled all 42 fabrication ex-
periments from 10 purposively-sampled papers in the tool (full code,
citations, and details appear in Appendix A). We then contacted
the first and last authors of these papers using information listed
on their websites, and discussed the FEDT tool and our replications
of their experiments with authors from all 10 papers. We highlight
features of these papers and lessons learned from the exercise of
modeling; we further discuss three results of our conversations
with authors: corrections on our modeled experiments, reflections
on what experiments “are,” and ideas for using and extending FEDT.
The 10 papers we selected are from highly-respected HCI confer-
ences (CHL UIST, TEI), and cover a variety of fabrication techniques
and technologies. Here, we refer to the authors of these 10 works
“researchers” to distinguish them from the authors of this paper.

4.1 Modeling Existing Experiments

To demonstrate FEDT’s comprehensiveness (ability to capture a vari-
ety of experiments that include interventions in various workflow
stages), we modeled all experiments involving digital fabrication
from the purposive papers. We exclude one experiment from Design,
Mould, Grow! [31] that did not use digital fabrication machines and
one from SPEERLoom [77] that did not fabricate any objects. By
“model”, we mean writing functions in FEDT that can be executed to
attain results comparable to those reported in the papers: we only
performed actual fabrication steps for two papers’ experiments
(Section 4.1.2).

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

The purposive papers include variables introduced in every work-
flow stage (Figure 2); they use 3D printers, custom weaving ma-
chines, laser cutters, knitting machines, vinyl cutters, and scissors;
and they explore shape-change, logic gates, electrostatics, tagging,
and bio-fabrication. Table 1 summarizes the papers; it also lists
the key FEDT features used for each, which we extracted from the
experiment programs after researcher-driven correction.

Working from papers’ original text, the first author (who has >10
years of experience in publishing HCI fabrication papers) attempted
to model each experiment in FEDT. Despite our goal of a purposive
sample with well-described experiments, we still found some of
them difficult to implement given the descriptions in the paper,
with challenges understanding exactly how many objects were
fabricated, if and when objects were reused between experiments,
what machine was used for manufacture, as well as other missing
details. We made our best guess of the experimental procedure
using our own knowledge, and noted it as a question for our later
conversations with the original researchers.

We were able to model all experiments in our language, and they
are presented in full in Appendix A. In total, 42 experiments were
modeled (2-8 per paper, 4.2 on average, column 5 in Table 1).

4.1.1 Reflections on Modeling Existing Experiments. For certain
experiments in our dataset, we were uncertain how to express them
according to the workflow (Figure 2). For example, in AirLogic [69],
one experiment involves orienting objects in different ways relative
to the print bed, then printing them and forcing air through to
determine how printed layer lines at differing orientations affect
airflow. Even after discussing with the original researchers, there
was no consensus on whether this was a geometry/CAD variable
(since the geometry was rotated) or a manufacture/CAM variable
(since the relative angle of the slicing was changed). Since FEDT is
based on a language, and languages can flexibly capture concepts
in varying ways, the upshot is that it does not matter whether these
align with the workflow in a particular way: FEDT is able to capture
either method of modeling, and still precisely describe what the
researcher did.

An interesting point of flexibility we had not not previously
considered is that FEDT allows specifying measurements of both
physical and virtual objects. In some experiments that we modeled,
the original researchers compared outputs of simulations to outputs
of physical manufacturing processes by looking at their final geome-
tries. FEDT is currently built such that geometric measurements of
virtual objects can be specified and prompted in the same way as
those of physical objects (e.g., Appendix A.8). We also found that
capturing non-standard fabrication flows (e.g., where 2D geometry
is defined by a computer and manually cut with scissors, Appen-
dix A.6) and those on novel fabrication machines (Appendix A.10)
was possible. These highlight FEDT’s extensibility.

4.1.2 End-to-end replications of two experiments. To confirm the
connection of the pipeline to our lab’s infrastructure, we also used
FEDT to create all the objects for end-to-end replications of one
experiment from G-ID [20]—which uses 3D printers and variables
generated through slicing—and one from CircWood [39]—which
uses a laser cutter and variables introduced through materials, fab-
rication, and post-processing (Figure 6). In particular, we fabricated
objects for a CircWood experiment that measured the changes in

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.
<
gl & o &
§ &1 Flg &l é
Paper Title (Year) Manufacturing Tech Author Keywords Sources of Variability # Expts ~ < & § 5 24 ~
Jtrilaterate [71] ("19) | FFF Printer capacitive sensing CAD, user interaction ‘ 2 ‘ v v v v v
AirLogic [69] (°22) FFF Printer fluidics, logic gates CAD, CAM, actuation 3 v v v v
BlowFab [85] ('17) Laser Cutter, Inflation prototyping, CAD 3 v v v v
creativity support ‘
CircWood [39] ('22) Laser Cutter laser beam machining | CAD, CAM, material, 6 v v 4 v v
post-processing, time
Design, Mould, FFF Printer, Moulding bio-fabrication CAD, material, 3 v v v v v
Grow! [31] (°23) post-processing,
actuation
ElectriPop [25] (°22) Laser Cutter, Vinyl Cutter, | electrostatic inflation | CAD, simulation, time 8 v v v v v v
Scissors
FabHydro [87] ('21) SLA Printer interaction, design CAD, material, time ‘ 6 ‘ v v v v v v
G-ID [20] ('20) FFF Printer, 3D Rendering | identification, tags CAD, CAM, machine, 6 v v v v v
environment, actuation
KnitPicking [35] (19) | Machine/Hand Knitting machine knitting, CAD 2 v v v v v v
soft fabrication ‘
SPEERLoom [77] (°23) | Weaving weaving, mathematics | CAD, machine 3 v v v v v v
engineering

Table 1: Features of papers modeled for the evaluation. The second column represents the manufacturing technologies/tech-
niques used in each paper. We use Batch for BatchMeasurements, Immediate for ImmediateMeasurements. VirtualWorldObjects
and RealWorldObjects are workflow features used in all papers, so they are not in the table.

Figure 4: The flowchart of our replicated CircWood experi-
ment, exploring 7 different focal lengths for laser cutting,.

resistance from scanning the laser over a piece of wood at different
focal heights (Appendix A.4.2), and for a G-ID experiment that
manufactured objects with a series of random parameters to see
how accurately they can be distinguished (Appendix A.8.2). For the
CircWood experiment, we also generated ids to be cut alongside the
tests (Figure 6, left). It was necessary to modify the parameters used
by the G-ID experiment as our slicer software (Prusa slicer) did not
expose identical ones (we substituted “honeycomb” infill for the
“trihexagon” described, and converted “infill width” measurements
reported into percentage infills). This suggests a future opportunity
for formalizing and sharing adaptations of experiments to various
physical lab setups’ executors, and perhaps even automated sug-
gestions for such translations; such an extension could include, e.g.,
models of machine capabilities from Taxon [80], but would neces-
sarily rely on some researcher expertise. This is beyond the scope
of our work here, though it may come with adoption of FEDT.

Figure 5: The flowchart of the G-ID experiment we replicated,
which generates 14 sets of random slicer settings (10 for large
objects and 4 for medium objects) within set ranges and 3D
prints them.

On a practical level, to achieve these end-to-end replications we
have also implemented executors that connect with software and
machines available in our labs. These are described here briefly to
give the reader an idea of what is possible, but full implementation
is available at https://osf.io/ewuxb/:

Laser Cutter We use the Python drawsvg’ library to program-
matically generate SVG files. Our physical laser is an Epilog Helix 24,
with a bed size of 24" x 18", which we drive using the command-line
functionality of VisiCut®. For this, we programmatically generate

https://pypi.org/project/drawsveg/
8https://visicut.org/

https://osf.io/ewuxb/
https://pypi.org/project/drawsvg/
https://visicut.org/

FEDT

10 oo

6.0 Mawial

Woad

. Post- User
ricati))
Processing Interaction
20 Matetal Tickness mm) V]
— s e +
30
o e exon 605w

50

Figure 6: We replicated objects using experiment workflows
from CircWood (top) and G-ID (bottom) using FEDT and the
backend library functions implemented for our lab.

a settings file at the beginning of a laser experiment which con-
tains all combinations of settings to be tested: the user must then
manually import this file into VisiCut, as it cannot be done pro-
grammatically. During the run, we generate mappings files using
VisiCut’s XML templating language to access required settings. Our
laser does not support remote execution, so the researcher manually
presses the execute button when prompted.

3D Printer We use the Python FreeCAD? library to program-
matically generate and manipulate STL files. We also implemented
instructions that guide the user to set variables in parametric models
in Autodesk Fusion, without making use of their Python bindings.
We use various 3D printers: Creality Ender 3 Pro, Prusa MK4, Ulti-
maker 3, and Bambu Labs Carbon X1. We use PrusaSlicer 2.8.0 for
all command-line slicing. Our lab’s print management system does
not offer an API, so we have implemented instructions that ask the
user to load gcode files onto SD cards, set the printer according to
the experiment setup, and begin prints manually.

Calipers and Multimeters We implemented Calipers and
Multimeter classes that lead a user through manually capturing
Measurements (e.g., dimensions, resistances, etc.) for immediate or
batch processing.

Human Although automated humans are not available in our
area, we created a Human class to carry out various workflow tasks
through instructions to the researcher. This explicitly clarifies
that a human is performing a task, but functionally such tasks could
just as easily be carried out with instructions.

4.2 Walkthroughs with Fabrication Researchers

We emailed the first and last researcher listed on all papers whose
experiments we modeled, and met with researchers from all 10
papers. We spoke with 14 researchers via Zoom: in 4 cases, both the
first— and last listed spoke with us in the same interview. We asked
each researcher a series of demographic questions, demonstrated
the FEDT prototype for them, walked through our reproduction of
their experiments, and had a semi-structured interview to under-
stand how FEDT might fit in their work process.
Demographically, our 14 researchers had 3-27 (average 8.57)
years of experience in fabrication research and -3-40 (average

https://www.freecad.org/

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

6.93) years since completion of their Ph.D. (in three cases, the re-
searchers had not yet completed their Ph.D.; we recorded these as
negative years “since completion”). They had published 1-46 (av-
erage 10.07) papers each that they described as fabrication papers
(this included papers in HCI, graphics, and additive manufactur-
ing journals). Seven identified as female and seven as male. These
researchers’ current positions were at nine universities and two
companies worldwide, with one saying they were retired and one
describing themself as an independent researcher. Researchers were
currently based in six countries.

During each conversation, we demonstrated the tool by briefly
explaining our method for extracting the DSL, then showing them a
collection of toy examples demonstrating its features (instructions;
flowchart, Design mode, and Execute mode; Series, Parallel,
while, and shuffle loops; CAD manipulation; material descrip-
tion; CAM manipulation; post-processing instructions; user study
tasks; BatchMeasurements and ImmediateMeasurements) before
walking them through the code we had written to model their ex-
periments. We asked for clarification on any challenges we had in
modeling, and we invited them to ask questions throughout. This
took approximately 60 minutes per researcher or researcher pair.

4.2.1 Correction of our Modeled Experiments. In some cases, re-
searchers informed us that the models we made were incorrect.
Researcher-driven correction of our 42 replications is reproduced
in the Appendix, but at a high level we reproduced 13 experiments
correctly and made mistakes with the rest (Table 2). The first author
went through the correction notes to classify them into categories,
and these were refined through discussion with other authors. Note
that some experiments were affected by more than one type or sub-
type of mistake, so counts do not sum to 42. There were four kinds
of mistakes that we made. In the first type, papers lacked adequate
detail, and we made incorrect assumptions in our reproductions re-
garding the number of objects made, how randomness was applied,
which machines were used, etc.: this happened in 24 experiments.
In the second type of mistake, which affected 4 experiments, we
did not reproduce enough detail in the experiments to satisfy the
original researchers, so more was added.

In 7 cases, we modeled what was written in the paper, but it
turned out that the paper’s description of an experiment was in-
consistent with what was actually performed. This was especially
interesting, as it suggests that the precision required to actually
perform an experiment is not always identical to what must be
communicated about it. This same concept was reflected in some
researchers’ comments on the gap between reviewing and actu-
ally replicating fabrication papers, for example, one researcher
described that, in reality, papers do not include all the “know-how”
required to replicate them—which became clear when they tried to
build on another person’s project, but that when “I read [a paper],
I feel it would be easy to replicate it

The final type of mistake, affecting 6 experiments, was that we
modeled “experiments” which the researchers felt were intended
to be “demonstrations.”

It was possible to rectify all mistakes within FEDT. In addition,
we noted that researchers were frequently able to spot issues with
our implementations of their experiments during our screenshare,

https://www.freecad.org/

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Error Type
Wrong # unique objects

Occurrences - expts

10- 1.1, 1.2, 3.1, 4.2, 4.4,
6.5, 6.8, 7.4, 8.1, 10.1

Wrong # repeated objects 1-33

Wrong # repeated steps 5-5262, 63, 7.2 8.1

Wrong use of randomness 1-12

Wrong machine or tool used 4-31,32 33 9.1

Wrong measurement method 3-6.4, 6.7 10.2

Wrong method, same outcome | 2 - 4.5, 5.2, 10.1

Wrong loop type 5-5.1,52 53 83, 10.1

Total incorrect assumptions | 24

4-51,5253 81

7-31,32 3372, 77,
9.1, 9.2

6-6.5 6.6,6.7, 7.1, 7.6,
8.5

13-2.1,22, 2.3, 4.1, 4.3,
4.6,6.1, 7.3, 7.5, 8.2,
8.4, 8.6, 10.3
Table 2: Types of corrections made, and which experiments
they applied to. Experiments are referred to by their Appen-
dix section, which is written as PAPER.EXPERIMENT, i.e.,
8.3 is the third experiment reported in paper #8.

Insufficient detail

Simplification in paper

Not an experiment

No corrections

even before we verbally described the experiments for them. We
take this as evidence toward FEDT’s precision.

Our Reflections on Mistakes and Communication. These mistakes
provide an intriguing glimpse of the language’s power. Once the
experiments were translated from communicative prose to exe-
cutable formalisms, it was clear both to us the authors and to the
researchers what was being done correctly or incorrectly. Errors
caused by our incorrect assumptions or lack of sufficient detail
in modeling, and authors’ disagreement with us about what con-
stitutes an experiment versus a demonstration would have been
avoided by their initially writing the FEDT versions of the proto-
cols. The “simplification in paper” errors, on the other hand, require
more consideration, as they step towards the opportunities and pit-
falls of simulation. Future work might explore analysis tools that
can simplify or confirm equivalence of programs, but this requires
some definition of what equivalence is, which becomes quite messy
in the real world. FEDT enables these conversations to happen
on a technical level: where they go will be a social process to be
navigated at the community level.

One especially interesting mistake came from experiment 10.1
in the SPEERLoom paper: the authors, in attempting to calibrate
and evaluate their custom-built machine, treat the machine both
as a site of fabrication and as a fabricated object being tested [77].
This required exercising the language in a different way to other
experiments, but was possible to do.

4.2.2 Researchers’ Reflections on What an Experiment Is. In some
cases, we struggled with defining whether a particular portion of
a paper was an “experiment” or a “demonstration,” but erred on
the side of modeling and following up with the researchers. They

Savage, et al.

reflected on these questions in our studies, with one saying that
“in fabrication papers, most of the experiments are ‘demonstrative’
We did this, and this is how it performs, and keep that in mind
when you design it,” and others highlighting that for some of their
studies, the purpose was “more anecdotal than scientific” or “in-
tended to give intuition.” This aligns with Ledo, et al.,;s description
of a demonstration for toolkit evaluation [47]. There were other
questions around whether experiments involved “digital fabrica-
tion” or not; certain experiments use the basic machinery of digital
fabrication but render objects in a different way, e.g., virtually (for
example G-ID’s experiment to assess camera angle’s effect on de-
tection, which was performed using simulated renders of gcode in
Blender (Appendix A.8)). What qualifies an artifact as “digitally-
fabricated” was not directly discussed with the original researchers,
although the question of difference in rendering has been explored
in panels [19].

4.2.3 Researchers’ Ideas for Uses of FEDT. Towards our goal of
precision, many researchers felt that FEDT would be useful for giv-
ing an unambiguous specification of an experiment, likely through
sharing the Python code as they in general felt that the flowcharts
were too large and confusing (we added flowchart reduction after
our studies). They agreed that it would help them manage their
workflows and reconstruct what they had done when coming back
to recorded data, models, or objects years later, particularly in con-
cert with object labeling. They also had ideas on other ways they
would use it; e.g., to create “contracts” with student researchers for
how an experiment was to be performed, or to find and reuse exper-
imental methodologies as “standards.” Most researchers expressed
an interest in using FEDT right away.

4.2.4 Researchers’ Ideas for Extensions to FEDT. Researchers had
many suggestions for how FEDT could be expanded to support
other types of workflows (such as by mixing textual and video
instructions to communicate precise timing or tacit knowledge in
physical crafting performances, or by adding more modules that
could support “pure” psychology-style user tests), to enable richer
end-to-end evaluation of experiments (such as by adding simula-
tion), to record qualitative occurrences during execution (such as
jigs breaking and being replaced), to have periodic checks (such as
to ensure a needle remains sharp), or to empower more researcher
groups (such as by adding visual coding modes, explicit integration
with Jupyter Notebooks, or interaction via the flowchart instead
of the coding-and-command line paradigm we currently use). Re-
searchers also requested further functionality that would help them
manage the most time-consuming portions of an experimental
workflow, such as print time or sample growing times. We elabo-
rate on some of these in Section 6, but notably none of the suggested
extensions were related to limitations of the language we created:
only to limitations of the interface or executors.

5 Related Work

We discuss prior research on four areas that are relevant to the
work in this paper.

FEDT

5.1 Overviews of Fabrication Research and
Evaluation

Prior work has discussed fabrication’s essential Analog — Digi-
tal/Digital — Analog workflow, which links it to other processes
like page layouting [8]; we extract a workflow of fabrication experi-
ments, which shares this high-level flow but is more detailed. Other
categorizations of fabrication literature also exist, for example orga-
nizing works into a design space of 3D printable interactivity [5] or
defining functional links between fabrication and sensing [70], but
these focus on what researchers are exploring, while we focus here
on how it is being explored through experiments, and how that
process can be supported. Fabrication machine benchmarking tools
and techniques also exist [42, 49], but focus on tools only instead
of workflows. Findings of such processes could be integrated into
our experimental reporting. Somewhat closer to experiments, Ledo,
et al., explore evaluation techniques for toolkits [47]: they describe
demonstration, usage, performance, and heuristics as strategies em-
ployed by researchers. Here, we examine a different slice of papers
(fabrication-related rather than toolkits) and more deeply explore
experiments beyond benchmarking; this complements Ledo, et al.,’s
definition of technical evaluations.

5.2 Formal Grammars for HCI, for Fabrication,
and for Workflows

The study of formal grammars began as a way to capture the struc-
ture of human language [13], but in modern computer science they
capture commonalities between a wide variety of structures. The
Vega family of grammars [53, 67, 68], for example, capture the
common structure of graphical visualizations, while Taxon [80]
captures commonalities between fabrication machines. In this vein,
the language underlying FEDT captures the common structure of
fabrication experiments.

But grammars like Vega’s and Taxon’s do not simply capture
commonalities between structures, they act as user interfaces for
constructing those structures; they are fully-fledged domain-specific
languages. These kinds of user interfaces abound in the fabrication
literature. O’Leary, et al., have published several systems lever-
aging programmatic interfaces to fabrication machines, e.g., Im-
primer [79], work which was expanded by Dynamic Toolchains [81];
Fossdal, et al.,’s Vespidae likewise explores path planning and visu-
alization for fabrication hardware [28]. This work is highly relevant
to our own and informs it on a conceptual level, but examines fab-
rication devices and their functionality rather than explicit, formal
experiments performed with them, as is our focus here.

Nandi, et al., have likewise built formal, grammar-based represen-
tations of 3D printed and printable models, enabling decompilation
of low-level geometry into high-level DSLs [56, 57], while OPTI-
MISM focuses on an optimisation language for creating fabricated
objects through collaboration between programmers and domain
experts [36]. These are inspiring to our exploration, but focus on ge-
ometry instead of a full pipeline. Drill Sergeant [72], HELM [84], and
ICEE [88] use DSLs for carpentry, enabling users to create paramet-
ric fabrication plans and modify them while adhering to physical
constraints and available manufacturing processes. Our focus is on
precise definition of methodology, rather than enabling improvisa-
tion, and FEDT interacts with all stages of an experiment-focused

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

fabrication pipeline rather than only the actual manufacturing step
for a pre-defined single object.

Domain specific languages are also emerging as tools for describ-
ing parts of the experimental process, including data collection and
data analysis. SureVeyor, like FEDT, targets data collection. It allows
users to define high-quality online surveys, with a suite of tools
for de-biasing question presentation [75]. While FEDT supports a
very different flavor of data collection, both languages provide an
unambiguous way to describe—and potentially replicate—a given
data collection procedure. When it comes to data analysis, there
are two main lines of work. Tea [40] and Tisane [41] support small
to medium scale experimental analysis: Tea helps users to choose
statistical tests based on their data assumptions, and Tisane sup-
ports specification and execution of generalized linear mixed-effect
models. Another option for larger data analysis is multiverse anal-
ysis, embodied in DSLs like Boba [51] and multiverse [66]. These
allow the user to clearly communicate how their data analysis was
chosen from space of possible analyses. Our language is orthogo-
nal to these data analysis concerns: FEDT could describe the data
collection part of a fabrication experiment and Tea, Tisane, Boba,
or multiverse could express the analysis portion.

5.3 Open Science in HCI

HCI is supposed to have a replication crisis [23, 26], with accusa-
tions of sloppy statistics and validity slippage leveled against the
field at least as early as 1998 [32]. Meanwhile, Ben Shneiderman
called out hypothesis generation for scientists as an area to focus on
with creativity support tools in 2007 [74], as a chance to help “users
to rapidly generate multiple alternatives, explore their implications,
or revert to earlier stages when needed.” This north star has inspired
various kinds of research in HCIL. One prominent area builds tools
to help scientists with their work. Schwind, et al., build a system to
help structure user studies and their analyses based on goals [73],
while Aperitif [58] scaffolds pre-registrations and auto-generates
analysis code: these are features we would like to integrate into
FEDT in the future. Howell and Bateman [37] discuss how sharing
making instructions with scientists and industrial colleagues can
help increase work’s impact—with FEDT, we perform additional
analyses and build tools to actually facilitate this process.

A meta area of HCI has explored how open we are as a com-
munity. This analysis has been performed via crawling journals
[6], authors’ self-reports [82], or post-hoc analysis of publications
[65]. Echtler and Héaufler found that open-sourcing is rare in HCI
for several reasons, “e.g. anxiety that one’s own code is ‘not good
enough’ for the public [7], not wanting to provide future support
for the software, [or] social barriers when contributing to an exist-
ing project [78]” [23]. Recent findings have highlighted that many
in HCI do not share their artifacts (software or hardware) due to
a combination of misunderstanding reasons or methods for shar-
ing [82]: we hope that codifying experimental practices into short,
procedure-focused methods and abstracting execution to a second
layer of code will help ease this for future researchers.

Somewhat adjacent to HCI, conferences like ACM REP [1] have
opened up new opportunities for studying tools intended for repli-
cability of scientific experiments [17]. However, fabrication experi-
ments have so far not been the focus of such tools.

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

5.4 Experiments and Replicability in Other
Fields

Other fields have their own structures and styles of experiments
and documentation, which we can gain inspiration from moving
forward. Prior work has compared reproducibility and replicability
efforts across tools [17] and fields [62]. In particular, the analysis
by Rahal, et al. [62] showed that while transparency is relevant in a
wide range of areas like social sciences, humanities, life sciences, en-
gineering, and psychology, the stage at which transparency become
relevant depends on the field—while in basic research, it becomes
relevant as the experiment is being planned and remains relevant
till publication, in applied research often the focus is on the overall
method rather than reproducing exact experimental results. The
question of what components are most important to replicability
in HCI fabrication research remains one for community discussion.

Fabrication experiments are complex, involving both tools and
human intervention, interleaved through the steps of the workflow.
Replicability of these experiments therefore requires documenting
the exact steps in the right order, capturing both the design and
manufacturing components, all of which is enabled by FEDT.

Researchers in “laboratory sciences” like chemistry and physics
maintain physical lab notebooks (in some cases, as a legal require-
ment to comply with audits and/or to support intellectual property
dating) documenting their experiments: this tradition developed
into digital lab notebooks, like Jupyter!'?. For pure computation,
tools like WholeTale!!, RenkuLab!?, and ReproZip13 facilitate re-
producibility of scientific experiments by bundling data, code, and
environment variables and offering a robust platform that reduces
experimental setup time. Some projects take digitization even fur-
ther, with physical and virtual integration of plans and data with
machines: LabGuru'* enables the recording of procedures, tracking
of supplies, time-sharing of equipment, and running of experiments
through web-enabled sensing and actuation devices and ID tags.
These tools serve as inspiration for many more features that could
be implemented in future FEDT versions.

6 Discussion

FEDT’s groundwork, design, and implementation have all been
informed by the authors’ academic backgrounds (HCI, fabrication,
engineering design, and programming languages).

HCI has a rich tradition of being inspired by and heavily citing
work from adjacent disciplines, such as materials science [60, 61],
mechanical engineering [4], robotics [50] and architecture [46].
Indeed, researchers we spoke with remarked that researchers in
other disciplines tend to report more formal experiments than we do
in HCI: in collaboration with such researchers, the domain-specific
activities captured in our DSL could help reveal and formalize inter-
area differences and assumptions.

Here, we reflect on some of the key points we see as left unsolved
and develop visions for where else FEDT could go.

Ohttps://jupyter.org
Uhttps://wholetale.org/
2https://renkulab.io/
Bhttps://www.reprozip.org/
4https://labguru.com

Savage, et al.

6.1 Limitations

Research is not without limitations: the choices we made here are
certainly not the only valid ones. Most importantly, we acknowl-
edge limitation in our sampling, in the choice and extent of our
implementation, and in our selected evaluation methods.

6.1.1 Sampling. The papers we sampled for evaluating both our
workflow and FEDT are limited in number, and we selected them
purposively rather than systematically or exhaustively. Future sam-
ples may show ways in which FEDT must expand to describe all
possible fabrication publications.

6.1.2 Overall Approach. Our choice to implement FEDT as a DSL
does not come without trade-offs. DSLs often have a significant
learning curve and may pose a barrier to entry for those who are not
familiar with programming; they are also traditionally text-based
and therefore “unimodal,” whereas experimental designs often in-
clude images, sounds, and other modalities.

We mitigated these downsides with FEDT by basing it on Python:
as languages go, Python is fairly beginner-friendly, and it also has
extensive support for multi-modal programs in literate environ-
ments like notebooks. The upsides of DSLs are foundational to
FEDT: the complexity of this space requires an interface that is
flexible, compositional, and extensible—all things DSLs excel at.

At the end of the day, a DSL may not be the user interface that
the community chooses to fill this niche. FEDT may become the
“backend” for a more accessible interface (e.g., a drag-and-drop
editor) or it may simply serve as inspiration and guidance for a
new generation of approaches. Balancing the needs of a highly-
interdisciplinary research community like ours is not the work of
one paper, but we see FEDT as a first step towards a future tool
for researchers, supervisors, reviewers, and others to use to build,
execute, and communicate experiments. It can already serve as a
part of a balanced experiment documentation package that includes
pre-registrations, photos, videos, and prose.

6.1.3 Implementation. FEDT is intended as a research probe, rather
than a fully-engineered system: we have yet to explore its use in non-
command-line environments, and the library implementation we
have released is confined to our own labs’ machines. FEDT has not
been engineered to robustly help users recover from errors, crashes,
broken machinery, etc., in the process of running experiments.
However, each workflow stage results in an object (whether virtual
or physical), which encapsulates the choices made up to that point:
these could provide natural points from which to resume.

6.1.4 Evaluation. Finally, for this paper, we have focused on eval-
uating utility rather than usability: we hope that future work will
explore FEDT’s applicability to the creation of novel experiments
and the difficulties that may be encountered in using it by others
than the authors of this paper.

6.2 Handling Randomness and Simulations

While FEDT is intended to help researchers clearly specify executed
experiments’ methods and what they intentionally vary, there are
two main sources of randomness that cannot be captured: the envi-
ronment and humans-in-the-loop. A simulation can only capture
the environment as it is programmed to, and the real world will

https://jupyter.org
https://labguru.com

FEDT

always be messier: one could replace experiment steps with simu-
lations (supported in FEDT on a technical level), but in some cases
this belies their complexity. For example, filament age or a room’s
humidity on a given day can affect the quality of a 3D print, the
precise bend in a sheet of acrylic from the way it was stored can
affect laser-cuttability, and non-homogeneities in natural materials
(e.g., wood knots) can require changing spindle speeds for CNC
machining. Including users and their bodies, actions, or judgment
in the process exacerbates this issue. Academics have argued about
whether digital fabrication processes can or should be treated like
compilation [34], but no real-world experiment description can con-
tain all the uncontrolled variables present. Repeating experimental
conditions is a best-practice intended to mitigate such variables,
however it is not a perfect solution. Replicating identical methods
under varied conditions is one way to discover important uncon-
trolled variables, and this is one way in which FEDT can assist.
Our goal with FEDT is to enable completing an experiment in a
particular way, not to ensure getting the same results.

6.3 Experiments and Experimentation Going
Forward

In this work we have distinguished between “experiments”—in
which variables are introduced and formal measurements are taken—
and “experimentation”—where settings and configurations are tried
without formal procedures. This was echoed by our user study
participants in their descriptions of “demonstrations” and “giving
intuition” It may also be necessary to further define and formalize
what constitutes a fabrication experiment: as noted, one of the ex-
periments we modeled (where a machine was treated both as a site
of fabrication and as a fabricated object to be tested) required some
awkward implementation. Experimentation has been formally ex-
amined by, e.g., O’Leary, et al. [79], and we do not explore it here.
That said, some interviewed experts wished they had been more
diligent in tracking their experimentation: we do believe that using
our language for this task, especially with its ability to generate
labeled geometry, would be possible.

Going forward, we hope FEDT finds a home with fabrication
researchers and students, and that its extensible nature will enable
this. While we do not here call out specific papers we analyzed
with errors in their textual reporting, methods, or graphs, we did
encounter a non-trivial number of these which had made it through
the peer review process to publication. It is also the case that not
every fabrication paper described an experiment.

Making something easier can make it more common. Formal-
izing methods and making them more portable may also enable
benchmarking, or give researchers a simpler way to find exper-
iments appropriate to their studies. Future work should explore
creating a searchable database of experiments—perhaps even by
previously-published researchers themselves during a workshop or
a Wikipedia-style edit-a-thon—and possible integration with initia-
tives in the IEEE VIS community [27], the Graphics Replicability
Stamp Initiative (GRSI)!®, or The Many Labs project [16].

On the flipside, making something easier can make it more
formulaic: FEDT could invite future conversations about which

Shttps://www.replicabilitystamp.org/

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

@fedt_experiment
def benchy_PrinterA():
benchy_stl = GeometryFile('benchy.stl")
results = BatchMeasurements.empty()
for repetition in Parallel(range(3)):
fabbed_object = Printer.slice_and_print(benchy,
printer='Formlabs Form 2',
repetition=repetition)
results += Calipers.measure_size(fabbed_object, "x-axis")
analyze(results.get_all_data())

@fedt_experiment
def benchy_PrinterB():
benchy_stl = GeometryFile('benchy.stl')
results = BatchMeasurements.empty()
for repetition in Parallel(range(3)):
fabbed_object = Printer.slice_and_print(benchy,
printer='Formlabs Form 2',
repetition=repetition)
results += Calipers.measure_size(fabbed_object, "x-axis")
results += Calipers.measure_size(fabbed_object, "y-axis")
results += Calipers.measure_size(fabbed_object, "z-axis")
analyze(results.get_all_data())

Figure 7: Two FEDT programs for 3D printing a model.
Highlights show the difference between the two programs—
benchy_PrinterA only measures a single dimension of the
printed model whereas benchy_PrinterB measures three dif-
ferent dimensions. An automated group program analyzer
can be used to detect these differences and suggest additional
experiments or steps to FEDT users.

benchmarks are important for our community, and where non-
experiment-based technical evaluations are more appropriate [47].

6.4 FEDT’s Analysability and Group Analysis of
Experimental Programs

FEDT’s DSL approach opens up additional research directions like
group program analysis, which statically analyzes a set of programs
to automatically infer a library of reusable components [11, 22, 24].
Group program analysis can also be leveraged to automatically
suggest new or extended experiments to users of FEDT. For example,
consider two FEDT programs, both of which 3D print the popular
Benchy model'®. One of them measures the length, width, and
height of the model whereas the other only measures the length
(Figure 7). Group program analysis could detect these differences
and suggest measuring the additional dimensions. We envision a
future automated group program analyzer that, given two (or more)
input programs, can detect differences and similarities to (1) learn a
general, reusable library of functions, and (2) suggest missing steps.

6.5 Applicability to Other Fabrication Processes

Given that the workflow in Section 2 forms the foundation of FEDT,
and that it can capture varied processes, we expect our tool is useful
for a variety of fabrication techniques beyond what we test here.
While we only created executors for laser cutting and FFF 3D
printing, as we had access to these in our labs, we modeled ex-
periments using other manufacturing techniques and believe their
executors could be added due to FEDT’s extensible nature. For now,
it is possible to capture any fabrication description which can be

16https://www.3dbenchy.com

https://www.replicabilitystamp.org/
https://www.3dbenchy.com

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

communicated in text and/or code: this invites some flexibility to
describe hands-on processes (like the moulding required for Design,
Mould, Grow, Appendix A.5), to include sensor input in fabrication
processes (as in CircWood, Appendix A.4), or to write new execu-
tors that connect with other or novel API-driven machines (as in
SPEERLoom, Appendix A.10).

6.6 Further Extensions

As an open-source library, FEDT can be extended to interface with
different physical measurement or fabrication devices or connect
with software-based statistical and plotting tools. It could also inte-
grate with other machine specification and workflow development
tools like Taxon [80].

Programming via direct manipulation of code or outputs (as in
Scratch [63], Gliimpse [21], i-Latex [30], or Sketch-n-Sketch [14])
could be an interesting direction, and future work should explore
what the right interface for interacting with an executing experi-
ment might be. Web-based flowcharts!’, or gesture— [12] or voice-
controlled!® agents are all possibilities.

Power-users of FEDT might want to express even more complex
experiments. We envision extensions based on advances in the pro-
gramming languages literature. For example, ownership types [15]
(like those in Rust'®) could allow tracking that fabricated objects are
not destroyed before all necessary measurements have been made.
Choreographic programming [54] may allow users to automatically
align printing or growing times. Partial evaluation [29] could allow
users to perform experiments in “phases”; creating certain objects
in one run of an FEDT program and re-using those same objects to
continue follow-on experiments at a later time. Challenges await
in integrating such software paradigms with the messy real world:
for example, pausing execution of an algorithm allows it to trivially
resume, but pausing a print for an extended period during partial
evaluation may make new layers stick less effectively.

Encoding intention into FEDT programs, as highlighted by some
study participants, could be done manually by adding comments
and running existing documentation tools like doxygen?°, or auto-
matically through analysis. For example, looking at git or Jupyter
Notebook [33] logs of experiments as they are being authored or
experimentation plans as they are run, can help understand how
researchers go about selecting and narrowing down variables. How
researchers fork or remix others’ FEDT experiments could also give
interesting provenance information, and hook into social processes
around peer review and validation.

FEDT makes it possible to specify the execution of an exper-
iment, and to render it in a flowchart, but with some additional
work the Python code or flowchart could be rendered in human-
readable language, possibly at several different levels of detail (to
suit an abstract, introduction, methods section, appendix, or IRB
filing). We experimented with using LLMs to generate readable
experiment descriptions from FEDT programs, but struggled with
their tendency to hallucinate. Pure programmatic analysis may be
a better fit for this.

7SnapGene https://www.snapgene.com
18LabTwin https://www.labtwin.com/
Yhttps://www.rust-lang.org/
Dhttps://www.doxygen.nl/

Savage, et al.

7 Conclusion

We analyzed a collection of recent fabrication papers from top-tier
HCI conferences to better understand their experimental struc-
tures. From this, we created a workflow and a domain-specific
language to capture existing practices. We implemented a tool and
DSL called FEDT, which helps researchers plan and execute fabri-
cation experiments. Using FEDT, we modeled 42 experiments from
10 purposively-sampled papers, and present our reflections from
this task as well as responses and corrections from the original
papers’ authors. We report expert researchers’ thoughts about the
tool and its possibilities for bringing HCI fabrication research into
the future.

Acknowledgments

The authors would like to thank the anonymous reviewers and
shepherd for their input and enthusiasm, as well as Eunice Jun for
interesting discussions about modeling for science. Sarah Chasins
helped bring some of the authors together that led to this collabo-
ration.

This work was partially supported by a Novo Nordisk Fonden
Starting Grant under grant number NNF210C0072716, and NSERC
RGPIN-2023-03533.

References

[1] 2024. ACM REP ’24: Proceedings of the 2nd ACM Conference on Reproducibility
and Replicability (Rennes, France). Association for Computing Machinery, New
York, NY, USA.

Zahin Ahmed, Farishta Jayas Kinjol, and Ishrat Jahan Ananya. 2021. Comparative

Analysis of Six Programming Languages Based on Readability, Writability, and

Reliability. In 2021 24th International Conference on Computer and Information

Technology (ICCIT). 1-6. https://doi.org/10.1109/ICCIT54785.2021.9689813

Roland Aigner, Mira Alida Haberfellner, and Michael Haller. 2022. SpaceR:

Knitting Ready-Made, Tactile, and Highly Responsive Spacer-Fabric Force Sensors

for Continuous Input. In Proceedings of the 35th Annual ACM Symposium on

User Interface Software and Technology (UIST °22). Association for Computing

Machinery, New York, NY, USA. https://doi.org/10.1145/3526113.3545694 event-

place: Bend, OR, USA.

Marwa Alalawi, Noah Pacik-Nelson, Junyi Zhu, Ben Greenspan, Andrew Doan,

Brandon M Wong, Benjamin Owen-Block, Shanti Kaylene Mickens, Wilhelm Ja-

cobus Schoeman, Michael Wessely, Andreea Danielescu, and Stefanie Mueller.

2023. MechSense: A Design and Fabrication Pipeline for Integrating Rotary

Encoders into 3D Printed Mechanisms. In Proceedings of the 2023 CHI Conference

on Human Factors in Computing Systems (CHI ’23). Association for Comput-

ing Machinery, New York, NY, USA. https://doi.org/10.1145/3544548.3581361
event-place: Hamburg, Germany.

[5] Rafael Ballagas, Sarthak Ghosh, and James Landay. 2018. The Design Space of 3D
Printable Interactivity. Proceedings of the ACM on Interactive, Mobile, Wearable
and Ubiquitous Technologies 2, 2 (July 2018), 61:1-61:21. https://doi.org/10.1145/
3214264

[6] Nick Ballou, Vivek R. Warriar, and Sebastian Deterding. 2021. Are You Open? A
Content Analysis of Transparency and Openness Guidelines in HCI Journals. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(CHI °21). Association for Computing Machinery, New York, NY, USA, 1-10.
https://doi.org/10.1145/3411764.3445584

[7] Nick Barnes. 2010. Publish your computer code: it is good enough. Nature
467, 7317 (Oct. 2010), 753-753. https://doi.org/10.1038/467753a Number: 7317
Publisher: Nature Publishing Group.

[8] Patrick Baudisch and Stefanie Mueller. 2016. Personal Fabrication: State of the
Art and Future Research. In Proceedings of the 2016 CHI Conference Extended
Abstracts on Human Factors in Computing Systems (CHI EA °16). Association for
Computing Machinery, New York, NY, USA, 936-939. https://doi.org/10.1145/
2851581.2856664 event-place: San Jose, California, USA.

[9] Dustin Beyer, Serafima Gurevich, Stefanie Mueller, Hsiang-Ting Chen, and Patrick
Baudisch. 2015. Platener: Low-Fidelity Fabrication of 3D Objects by Substituting
3D Print with Laser-Cut Plates. In Proceedings of the 33rd Annual ACM Conference
on Human Factors in Computing Systems (CHI ’15). Association for Computing
Machinery, New York, NY, USA, 1799-1806. https://doi.org/10.1145/2702123.
2702225 event-place: Seoul, Republic of Korea.

[2

—_
A

—
B

https://www.snapgene.com
https://www.labtwin.com/
https://www.rust-lang.org/
https://www.doxygen.nl/
https://doi.org/10.1109/ICCIT54785.2021.9689813
https://doi.org/10.1145/3526113.3545694
https://doi.org/10.1145/3544548.3581361
https://doi.org/10.1145/3214264
https://doi.org/10.1145/3214264
https://doi.org/10.1145/3411764.3445584
https://doi.org/10.1038/467753a
https://doi.org/10.1145/2851581.2856664
https://doi.org/10.1145/2851581.2856664
https://doi.org/10.1145/2702123.2702225
https://doi.org/10.1145/2702123.2702225

FEDT

[10] A.F. Blackwell, C. Britton, A. Cox, T.R. G. Green, C. Gurr, G. Kadoda, M. S. Kutar,
M. Loomes, C. L. Nehaniv, M. Petre, C. Roast, C. Roe, A. Wong, and R. M. Young.
2001. Cognitive Dimensions of Notations: Design Tools for Cognitive Technology.
In Cognitive Technology: Instruments of Mind, Meurig Beynon, Chrystopher L.
Nehaniv, and Kerstin Dautenhahn (Eds.). Springer, Berlin, Heidelberg, 325-341.
https://doi.org/10.1007/3-540-44617-6_31

[11] David Cao, Rose Kunkel, Chandrakana Nandi, Max Willsey, Zachary Tatlock, and
Nadia Polikarpova. 2023. babble: Learning Better Abstractions with E-Graphs
and Anti-unification. Proceedings of the ACM on Programming Languages 7, POPL
(Jan. 2023), 396-424. https://doi.org/10.1145/3571207

[12] Derrick Cheng, Pei-Yu Chi, Taeil Kwak, Bjorn Hartmann, and Paul Wright. 2013.
Body-tracking camera control for demonstration videos. In CHI ’13 Extended
Abstracts on Human Factors in Computing Systems (Paris, France) (CHI EA ’13).
Association for Computing Machinery, New York, NY, USA, 1185-1190. https:
//doi.org/10.1145/2468356.2468568

[13] Noam Chomsky. 1959. On certain formal properties of grammars. Information and

Control 2, 2 (June 1959), 137-167. https://doi.org/10.1016/S0019-9958(59)90362-6

Ravi Chugh, Brian Hempel, Mitchell Spradlin, and Jacob Albers. 2016. Pro-

grammatic and direct manipulation, together at last. In Proceedings of the 37th

ACM SIGPLAN Conference on Programming Language Design and Implementation

(PLDI ’16). Association for Computing Machinery, New York, NY, USA, 341-354.

https://doi.org/10.1145/2908080.2908103

Dave Clarke, Johan Ostlund, Ilya Sergey, and Tobias Wrigstad. 2013. Ownership

Types: A Survey. In Aliasing in Object-Oriented Programming. Types, Analysis

and Verification, Dave Clarke, James Noble, and Tobias Wrigstad (Eds.). Springer,

Berlin, Heidelberg, 15-58. https://doi.org/10.1007/978-3-642-36946-9_3

[16] Open Science Collaboration. 2015. Estimating the reproducibility of psychological
science. Science 349, 6251 (2015), aac4716. https://doi.org/10.1126/science.aac4716
arXiv:https://www.science.org/doi/pdf/10.1126/science.aac4716

[17] Lazaro Costa, Susana Barbosa, and Jacome Cunha. 2024. Evaluating Tools for
Enhancing Reproducibility in Computational Scientific Experiments. In Proceed-
ings of the 2nd ACM Conference on Reproducibility and Replicability (Rennes,
France) (ACM REP °24). Association for Computing Machinery, New York, NY,
USA, 46-51. https://doi.org/10.1145/3641525.3663623

[18] Laura Devendorf and Kimiko Ryokai. 2015. Being the Machine: Reconfiguring
Agency and Control in Hybrid Fabrication. In Proceedings of the 33rd Annual
ACM Conference on Human Factors in Computing Systems (CHI ’15). Association
for Computing Machinery, New York, NY, USA, 2477-2486. https://doi.org/10.
1145/2702123.2702547 event-place: Seoul, Republic of Korea.

[19] Mustafa Doga Dogan, Patrick Baudisch, Hrvoje Benko, Michael Nebeling,
Huaishu Peng, Valkyrie Savage, and Stefanie Mueller. 2022. Fabricate It or
Render It? Digital Fabrication vs. Virtual Reality for Creating Objects Instantly.
In Extended Abstracts of the 2022 CHI Conference on Human Factors in Computing
Systems (CHI EA °22). Association for Computing Machinery, New York, NY, USA.
https://doi.org/10.1145/3491101.3516510 event-place: New Orleans, LA, USA.

[20] Mustafa Doga Dogan, Faraz Faruqi, Andrew Day Churchill, Kenneth Friedman,

Leon Cheng, Sriram Subramanian, and Stefanie Mueller. 2020. G-ID: Identifying

3D Prints Using Slicing Parameters. In Proceedings of the 2020 CHI Conference

on Human Factors in Computing Systems (CHI °20). Association for Computing

Machinery, New York, NY, USA, 1-13. https://doi.org/10.1145/3313831.3376202

event-place: Honolulu, HI, USA.

Pierre Dragicevic, Stéphane Huot, and Fanny Chevalier. 2011. Gliimpse: Ani-

mating from markup code to rendered documents and vice versa. In Proceedings

of the 24th annual ACM symposium on User interface software and technology

(UIST ’11). Association for Computing Machinery, New York, NY, USA, 257-262.

https://doi.org/10.1145/2047196.2047229

Sebastijan Dumancic, Tias Guns, and Andrew Cropper. 2021. Knowledge Refac-

toring for Inductive Program Synthesis. Proceedings of the AAAI Conference on

Artificial Intelligence 35, 8 (May 2021), 7271-7278. https://doi.org/10.1609/aaai.

v35i8.16893

Florian Echtler and Maximilian H4uf3ler. 2018. Open Source, Open Science, and

the Replication Crisis in HCL. In Extended Abstracts of the 2018 CHI Conference on

Human Factors in Computing Systems (CHI EA ’18). Association for Computing

Machinery, New York, NY, USA, 1-8. https://doi.org/10.1145/3170427.3188395

[24] Kevin Ellis, Catherine Wong, Maxwell Nye, Mathias Sablé-Meyer, Lucas Morales,

Luke Hewitt, Luc Cary, Armando Solar-Lezama, and Joshua B. Tenenbaum. 2021.

DreamCoder: bootstrapping inductive program synthesis with wake-sleep library

learning. In Proceedings of the 42nd ACM SIGPLAN International Conference on

Programming Language Design and Implementation (Virtual, Canada) (PLDI 2021).

Association for Computing Machinery, New York, NY, USA, 835-850. https:

//doi.org/10.1145/3453483.3454080

Cathy Mengying Fang, Jianzhe Gu, Lining Yao, and Chris Harrison. 2022. Elec-

triPop: Low-Cost, Shape-Changing Displays Using Electrostatically Inflated My-

lar Sheets. In Proceedings of the 2022 CHI Conference on Human Factors in Com-
puting Systems (CHI 22). Association for Computing Machinery, New York, NY,

USA. https://doi.org/10.1145/3491102.3501837 event-place: New Orleans, LA,

USA.

[14

[15

[21

[22

[23

[25

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

[26] Sebastian S. Feger, Siinje Dallmeier-Tiessen, Pawel W. Wozniak, and Albrecht

Schmidt. 2019. The Role of HCI in Reproducible Science: Understanding, Sup-
porting and Motivating Core Practices. In Extended Abstracts of the 2019 CHI
Conference on Human Factors in Computing Systems (CHI EA ’19). Association
for Computing Machinery, New York, NY, USA, 1-6. https://doi.org/10.1145/
3290607.3312905

Jean-Daniel Fekete and Juliana Freire. 2020. Exploring Reproducibility in Visu-
alization. IEEE Computer Graphics and Applications 40, 5 (Sept. 2020), 108-119.
https://doi.org/10.1109/MCG.2020.3006412 Conference Name: IEEE Computer
Graphics and Applications.

Frikk H Fossdal, Vinh Nguyen, Rogardt Heldal, Corie L. Cobb, and Nadya Peek.
2023. Vespidae: A Programming Framework for Developing Digital Fabrication
Workflows. In Proceedings of the 2023 ACM Designing Interactive Systems Con-
ference (DIS "23). Association for Computing Machinery, New York, NY, USA,
2034-2049. https://doi.org/10.1145/3563657.3596106

Yoshihiko Futamura. 1999. Partial Evaluation of Computation Process—An Ap-
proach to a Compiler-Compiler. Higher Order Symbol. Comput. 12, 4 (dec 1999),
381-391. https://doi.org/10.1023/A:1010095604496

Camille Gobert and Michel Beaudouin-Lafon. 2022. i-LaTeX : Manipulating
Transitional Representations between LaTeX Code and Generated Documents. In
Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(CHI °22). Association for Computing Machinery, New York, NY, USA, 1-16.
https://doi.org/10.1145/3491102.3517494

Phillip Gough, Praneeth Bimsara Perera, Michael A. Kertesz, and Anusha Withana.
2023. Design, Mould, Grow!: A Fabrication Pipeline for Growing 3D Designs
Using Myco-Materials. In Proceedings of the 2023 CHI Conference on Human Factors
in Computing Systems (CHI °23). Association for Computing Machinery, New
York, NY, USA. https://doi.org/10.1145/3544548.3580958 event-place: Hamburg,
Germany.

Wayne D. Gray and Marilyn C. Salzman. 1998. Damaged Merchan-
dise? A Review of Experiments That Compare Usability Evaluation Meth-
ods. Human—-Computer Interaction 13, 3 (Sept. 1998), 203-261. https:
//doi.org/10.1207/s15327051hci1303_2 Publisher: Taylor & Francis _eprint:
https://doi.org/10.1207/s15327051hci1303_2.

Andrew Head, Fred Hohman, Titus Barik, Steven M. Drucker, and Robert DeLine.
2019. Managing Messes in Computational Notebooks. In Proceedings of the 2019
CHI Conference on Human Factors in Computing Systems (CHI ’19). Association
for Computing Machinery, New York, NY, USA, 1-12. https://doi.org/10.1145/
3290605.3300500

Mare Hirsch, Gabrielle Benabdallah, Jennifer Jacobs, and Nadya Peek. 2023.
Nothing Like Compilation: How Professional Digital Fabrication Workflows Go
Beyond Extruding, Milling, and Machines. ACM Trans. Comput.-Hum. Interact.
31, 1 (Nov. 2023), 13:1-13:45. https://doi.org/10.1145/3609328

Megan Hofmann, Lea Albaugh, Ticha Sethapakadi, Jessica Hodgins, Scott E.
Hudson, James McCann, and Jennifer Mankoff. 2019. KnitPicking Textures:
Programming and Modifying Complex Knitted Textures for Machine and Hand
Knitting. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’19). Association for Computing Machinery, New
York, NY, USA, 5-16. https://doi.org/10.1145/3332165.3347886 event-place: New
Orleans, LA, USA.

Megan Hofmann, Nayha Auradkar, Jessica Birchfield, Jerry Cao, Autumn G
Hughes, Gene S-H Kim, Shriya Kurpad, Kathryn J Lum, Kelly Mack, Anisha
Nilakantan, Margaret Ellen Seehorn, Emily Warnock, Jennifer Mankoff, and
Scott E Hudson. 2023. OPTIMISM: Enabling Collaborative Implementation of
Domain Specific Metaheuristic Optimization. In Proceedings of the 2023 CHI
Conference on Human Factors in Computing Systems (CHI °23). Association for
Computing Machinery, New York, NY, USA, 1-19. https://doi.org/10.1145/
3544548.3580904

Larry L. Howell and Terri Bateman. 2023. Extending research impact by sharing
maker information. Nature Communications 14, 1 (Oct. 2023), 6170. https:
//doi.org/10.1038/s41467-023-41886-3

Scott E. Hudson. 2014. Printing teddy bears: a technique for 3D printing of soft
interactive objects. In Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems (Toronto, Ontario, Canada) (CHI ’14). Association for
Computing Machinery, New York, NY, USA, 459-468. https://doi.org/10.1145/
2556288.2557338

Ayaka Ishii, Kunihiro Kato, Kaori Ikematsu, Yoshihiro Kawahara, and Itiro Siio.
2022. CircWood: Laser Printed Circuit Boards and Sensors for Affordable DIY
Woodworking. In Sixteenth International Conference on Tangible, Embedded, and
Embodied Interaction (TEI "22). Association for Computing Machinery, New York,
NY, USA. https://doi.org/10.1145/3490149.3501317 event-place: Daejeon, Repub-
lic of Korea.

Eunice Jun, Maureen Daum, Jared Roesch, Sarah Chasins, Emery Berger, Rene
Just, and Katharina Reinecke. 2019. Tea: A High-level Language and Runtime
System for Automating Statistical Analysis. In Proceedings of the 32nd Annual
ACM Symposium on User Interface Software and Technology (UIST ’19). Association
for Computing Machinery, New York, NY, USA, 591-603. https://doi.org/10.
1145/3332165.3347940

https://doi.org/10.1007/3-540-44617-6_31
https://doi.org/10.1145/3571207
https://doi.org/10.1145/2468356.2468568
https://doi.org/10.1145/2468356.2468568
https://doi.org/10.1016/S0019-9958(59)90362-6
https://doi.org/10.1145/2908080.2908103
https://doi.org/10.1007/978-3-642-36946-9_3
https://doi.org/10.1126/science.aac4716
https://arxiv.org/abs/https://www.science.org/doi/pdf/10.1126/science.aac4716
https://doi.org/10.1145/3641525.3663623
https://doi.org/10.1145/2702123.2702547
https://doi.org/10.1145/2702123.2702547
https://doi.org/10.1145/3491101.3516510
https://doi.org/10.1145/3313831.3376202
https://doi.org/10.1145/2047196.2047229
https://doi.org/10.1609/aaai.v35i8.16893
https://doi.org/10.1609/aaai.v35i8.16893
https://doi.org/10.1145/3170427.3188395
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1145/3453483.3454080
https://doi.org/10.1145/3491102.3501837
https://doi.org/10.1145/3290607.3312905
https://doi.org/10.1145/3290607.3312905
https://doi.org/10.1109/MCG.2020.3006412
https://doi.org/10.1145/3563657.3596106
https://doi.org/10.1023/A:1010095604496
https://doi.org/10.1145/3491102.3517494
https://doi.org/10.1145/3544548.3580958
https://doi.org/10.1207/s15327051hci1303_2
https://doi.org/10.1207/s15327051hci1303_2
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3290605.3300500
https://doi.org/10.1145/3609328
https://doi.org/10.1145/3332165.3347886
https://doi.org/10.1145/3544548.3580904
https://doi.org/10.1145/3544548.3580904
https://doi.org/10.1038/s41467-023-41886-3
https://doi.org/10.1038/s41467-023-41886-3
https://doi.org/10.1145/2556288.2557338
https://doi.org/10.1145/2556288.2557338
https://doi.org/10.1145/3490149.3501317
https://doi.org/10.1145/3332165.3347940
https://doi.org/10.1145/3332165.3347940

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

[41] Eunice Jun, Audrey Seo, Jeffrey Heer, and René Just. 2022. Tisane: Authoring
Statistical Models via Formal Reasoning from Conceptual and Data Relationships.
In Proceedings of the 2022 CHI Conference on Human Factors in Computing Systems
(CHI °22). Association for Computing Machinery, New York, NY, USA, 1-16.
https://doi.org/10.1145/3491102.3501888
[42] Shohei Katakura, Martin Taraz, Muhammad Abdullah, Paul Methfessel, Lukas
Rambold, Robert Kovacs, and Patrick Baudisch. 2023. Kerfmeter: Automatic
Kerf Calibration for Laser Cutting. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (CHI "23). Association for Computing
Machinery, New York, NY, USA. https://doi.org/10.1145/3544548.3580914 event-
place: Hamburg, Germany.
[43] Arshad Khan, Joan Sol Roo, Tobias Kraus, and Jirgen Steimle. 2019. Soft Inkjet
Circuits: Rapid Multi-Material Fabrication of Soft Circuits Using a Commodity
Inkjet Printer. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’19). Association for Computing Machinery, New
York, NY, USA, 341-354. https://doi.org/10.1145/3332165.3347892 event-place:
New Orleans, LA, USA.
Marion Koelle, Madalina Nicolae, Aditya Shekhar Nittala, Marc Teyssier, and
Juirgen Steimle. 2022. Prototyping Soft Devices with Interactive Bioplastics. In
Proceedings of the 35th Annual ACM Symposium on User Interface Software and
Technology (Bend, OR, USA) (UIST °22). Association for Computing Machinery,
New York, NY, USA, Article 19, 16 pages. https://doi.org/10.1145/3526113.3545623
Robert Kovacs, Lukas Rambold, Lukas Fritzsche, Dominik Meier, Jotaro
Shigeyama, Shohei Katakura, Ran Zhang, and Patrick Baudisch. 2021. Trusscilla-
tor: A System for Fabricating Human-Scale Human-Powered Oscillating Devices.
In The 34th Annual ACM Symposium on User Interface Software and Technology
(UIST °21). Association for Computing Machinery, New York, NY, USA, 1074-1088.
https://doi.org/10.1145/3472749.3474807 event-place: Virtual Event, USA.
[46] Maria Larsson, Hironori Yoshida, Nobuyuki Umetani, and Takeo Igarashi. 2020.
Tsugite: Interactive Design and Fabrication of Wood Joints. In Proceedings of
the 33rd Annual ACM Symposium on User Interface Software and Technology
(UIST °20). Association for Computing Machinery, New York, NY, USA, 317-327.
https://doi.org/10.1145/3379337.3415899
David Ledo, Steven Houben, Jo Vermeulen, Nicolai Marquardt, Lora Oehlberg,
and Saul Greenberg. 2018. Evaluation Strategies for HCI Toolkit Research. In
Proceedings of the 2018 CHI Conference on Human Factors in Computing Systems
(CHI ’18). Association for Computing Machinery, New York, NY, USA, 1-17.
https://doi.org/10.1145/3173574.3173610
[48] Danny Leen, Nadya Peek, and Raf Ramakers. 2020. LamiFold: Fabricating Objects
with Integrated Mechanisms Using a Laser Cutter Lamination Workflow. In
Proceedings of the 33rd Annual ACM Symposium on User Interface Software and
Technology (UIST °20). Association for Computing Machinery, New York, NY,
USA, 304-316. https://doi.org/10.1145/3379337.3415885 event-place: Virtual
Event, USA.
[49] H.Li, L. Verdi, S. Chang, L. Verdi, and S. Chang. 2018. Benchmarking 3D Print-
ers’ Resolutions with Geometric Element Test Targets. Journal of Imaging
Science and Technology 62 (Jan. 2018), 1-8. https://doi.org/10.2352/].ImagingSci.
Technol.2018.62.1.010504 Publisher: Society for Imaging Science and Technology.
Jiahao Li, Jeeeun Kim, and Xiang *’Anthony’ Chen. 2019. Robiot: A Design Tool
for Actuating Everyday Objects with Automatically Generated 3D Printable
Mechanisms. In Proceedings of the 32nd Annual ACM Symposium on User Interface
Software and Technology (UIST ’19). Association for Computing Machinery, New
York, NY, USA, 673-685. https://doi.org/10.1145/3332165.3347894
[51] Yang Liu, Alex Kale, Tim Althoff, and Jeffrey Heer. 2021. Boba: Authoring and
Visualizing Multiverse Analyses. IEEE Transactions on Visualization and Com-
puter Graphics 27, 2 (Feb. 2021), 1753-1763. https://doi.org/10.1109/TVCG.2020.
3028985 Conference Name: IEEE Transactions on Visualization and Computer
Graphics.
[52] Marco Livesu, Stefano Ellero, Jonas Martinez, Sylvain Lefebvre, and Marco Attene.
2017. From 3D models to 3D prints: an overview of the processing pipeline.
Computer Graphics Forum 36, 2 (2017), 537-564. https://doi.org/10.1111/cgf.13147
_eprint: https://onlinelibrary.wiley.com/doi/pdf/10.1111/cgf.13147.
Andrew M McNutt and Ravi Chugh. 2021. Integrated Visualization Editing via
Parameterized Declarative Templates. In Proceedings of the 2021 CHI Conference on
Human Factors in Computing Systems (, Yokohama, Japan,) (CHI "21). Association
for Computing Machinery, New York, NY, USA, Article 17, 14 pages. https:
//doi.org/10.1145/3411764.3445356
[54] Fabrizio Montesi. 2013. "Choreographic Programming". PhD thesis. IT-
Universitetet i Kebenhavn, Copenhagen, Denmark. Available at https://portal.
findresearcher.sdu.dk/en/publications/choreographic-programming.
[55] IanE Moyer, Samuelle Bourgault, Devon Frost, and Jennifer Jacobs. 2024. Throw-
ing Out Conventions: Reimagining Craft-Centered CNC Tool Design through
the Digital Pottery Wheel. In Proceedings of the 2024 CHI Conference on Hu-
man Factors in Computing Systems (Honolulu, HI, USA) (CHI ’24). Associa-
tion for Computing Machinery, New York, NY, USA, Article 347, 22 pages.
https://doi.org/10.1145/3613904.3642361
Chandrakana Nandi, James R. Wilcox, Pavel Panchekha, Taylor Blau, Dan Gross-
man, and Zachary Tatlock. 2018. Functional programming for compiling and

[44

[45

[47

[50

(53

[56

[57

[58

[59

[60

(61

[62]

[63

[64

o
2

[66

=
=

[68

[69

[70

(71

Savage, et al.

decompiling computer-aided design. Proceedings of the ACM on Programming
Languages 2, ICFP (July 2018), 99:1-99:31. https://doi.org/10.1145/3236794
Chandrakana Nandi, Max Willsey, Adam Anderson, James R. Wilcox, Eva
Darulova, Dan Grossman, and Zachary Tatlock. 2020. Synthesizing structured
CAD models with equality saturation and inverse transformations. In Proceed-
ings of the 41st ACM SIGPLAN Conference on Programming Language Design and
Implementation (London, UK) (PLDI 2020). Association for Computing Machinery,
New York, NY, USA, 31-44. https://doi.org/10.1145/3385412.3386012

Yuren Pang, Katharina Reinecke, and René Just. 2022. Apéritif: Scaffolding Prereg-
istrations to Automatically Generate Analysis Code and Methods Descriptions.
In Proceedings of the 2022 CHI Conference on Human Factors in Computing Sys-
tems (CHI "22). Association for Computing Machinery, New York, NY, USA, 1-15.
https://doi.org/10.1145/3491102.3517707

Jonathan Peirce, Jeremy R. Gray, Sol Simpson, Michael MacAskill, Richard
Hochenberger, Hiroyuki Sogo, Erik Kastman, and Jonas Kristoffer Lindelgv. 2019.
PsychoPy2: Experiments in behavior made easy. Behavior Research Methods 51, 1
(Feb. 2019), 195-203. https://doi.org/10.3758/s13428-018-01193-y

Isabel P. S. Qamar, Sabina W Chen, Dimitri Tskhovrebadze, Paolo Boni, Faraz
Farugqi, Michael Wessely, and Stefanie Mueller. 2022. ChromoPrint: A Multi-
Color 3D Printer Based on a Reprogrammable Photochromic Resin. In Extended
Abstracts of the 2022 CHI Conference on Human Factors in Computing Systems
(CHI EA °22). Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3491101.3519784 event-place: New Orleans, LA, USA.

Isabel P. S. Qamar, Rainer Groh, David Holman, and Anne Roudaut. 2018. HCI
meets Material Science: A Literature Review of Morphing Materials for the
Design of Shape-Changing Interfaces. In Proceedings of the 2018 CHI Conference
on Human Factors in Computing Systems (CHI ’18). Association for Computing
Machinery, New York, NY, USA, 1-23. https://doi.org/10.1145/3173574.3173948
Rima-Maria Rahal, Hanjo Hamann, Hilmar Brohmer, and Florian Pethig. 2022.
Sharing the Recipe: Reproducibility and Replicability in Research Across Disci-
plines. Research Ideas and Outcomes 8 (Nov. 2022). https://doi.org/10.3897/ri0.8.
89980

Mitchel Resnick, John Maloney, Andrés Monroy-Hernandez, Natalie Rusk, Evelyn
Eastmond, Karen Brennan, Amon Millner, Eric Rosenbaum, Jay Silver, Brian
Silverman, and Yasmin Kafai. 2009. Scratch: programming for all. Commun. ACM
52, 11 (Nov. 2009), 60-67. https://doi.org/10.1145/1592761.1592779

Thijs Roumen, Ingo Apel, Jotaro Shigeyama, Abdullah Muhammad, and Patrick
Baudisch. 2020. Kerf-Canceling Mechanisms: Making Laser-Cut Mechanisms Op-
erate across Different Laser Cutters. In Proceedings of the 33rd Annual ACM Sym-
posium on User Interface Software and Technology. Association for Computing Ma-
chinery, New York, NY, USA, 293-303. https://doi.org/10.1145/3379337.3415895
Kavous Salehzadeh Niksirat, Lahari Goswami, Pooja S. B. Rao, James Tyler,
Alessandro Silacci, Sadiq Aliyu, Annika Aebli, Chat Wacharamanotham, and
Mauro Cherubini. 2023. Changes in Research Ethics, Openness, and Trans-
parency in Empirical Studies between CHI 2017 and CHI 2022. In Proceed-
ings of the 2023 CHI Conference on Human Factors in Computing Systems (CHI
"23). Association for Computing Machinery, New York, NY, USA, 1-23. https:
//doi.org/10.1145/3544548.3580848

Abhraneel Sarma, Alex Kale, Michael Jongho Moon, Nathan Taback, Fanny
Chevalier, Jessica Hullman, and Matthew Kay. 2023. multiverse: Multiplexing Al-
ternative Data Analyses in R Notebooks. In Proceedings of the 2023 CHI Conference
on Human Factors in Computing Systems (CHI °23). Association for Computing
Machinery, New York, NY, USA, 1-15. https://doi.org/10.1145/3544548.3580726
Arvind Satyanarayan, Dominik Moritz, Kanit Wongsuphasawat, and Jeffrey Heer.
2017. Vega-Lite: A Grammar of Interactive Graphics. IEEE Transactions on
Visualization and Computer Graphics 23, 1 (Jan. 2017), 341-350. https://doi.org/10.
1109/TVCG.2016.2599030 Conference Name: IEEE Transactions on Visualization
and Computer Graphics.

Arvind Satyanarayan, Ryan Russell, Jane Hoffswell, and Jeffrey Heer. 2016. Reac-
tive Vega: A Streaming Dataflow Architecture for Declarative Interactive Visu-
alization. IEEE Transactions on Visualization and Computer Graphics 22, 1 (Jan.
2016), 659-668. https://doi.org/10.1109/TVCG.2015.2467091 Conference Name:
IEEE Transactions on Visualization and Computer Graphics.

Valkyrie Savage, Carlos E. Tejada, and Mengyu Zhong. 2022. AirLogic: Embed-
ding Pneumatic Computation and I/O in 3D Models to Fabricate Electronics-Free
Interactive Objects. In Proceedings of the 35th annual ACM symposium on User in-
terface software and technology (UIST °22). Association for Computing Machinery,
New York, NY, USA. https://doi.org/10.1145/3526113.3545642

Valkyrie Arline Savage. 2016. Fabbed to Sense: Integrated Design of Geometry
and Sensing Algorithms for Interactive Objects. Doctoral thesis. University of
California, Berkeley.

Martin Schmitz, Martin Stitz, Florian Miiller, Markus Funk, and Max Miihlhiuser.
2019. ../Trilaterate: A Fabrication Pipeline to Design and 3D Print Hover-, Touch-,
and Force-Sensitive Objects. In Proceedings of the 2019 CHI Conference on Human
Factors in Computing Systems (CHI ’19). Association for Computing Machinery,
New York, NY, USA, 1-13. https://doi.org/10.1145/3290605.3300684 event-place:
Glasgow, Scotland Uk.

https://doi.org/10.1145/3491102.3501888
https://doi.org/10.1145/3544548.3580914
https://doi.org/10.1145/3332165.3347892
https://doi.org/10.1145/3526113.3545623
https://doi.org/10.1145/3472749.3474807
https://doi.org/10.1145/3379337.3415899
https://doi.org/10.1145/3173574.3173610
https://doi.org/10.1145/3379337.3415885
https://doi.org/10.2352/J.ImagingSci.Technol.2018.62.1.010504
https://doi.org/10.2352/J.ImagingSci.Technol.2018.62.1.010504
https://doi.org/10.1145/3332165.3347894
https://doi.org/10.1109/TVCG.2020.3028985
https://doi.org/10.1109/TVCG.2020.3028985
https://doi.org/10.1111/cgf.13147
https://doi.org/10.1145/3411764.3445356
https://doi.org/10.1145/3411764.3445356
https://portal.findresearcher.sdu.dk/en/publications/choreographic-programming
https://portal.findresearcher.sdu.dk/en/publications/choreographic-programming
https://doi.org/10.1145/3613904.3642361
https://doi.org/10.1145/3236794
https://doi.org/10.1145/3385412.3386012
https://doi.org/10.1145/3491102.3517707
https://doi.org/10.3758/s13428-018-01193-y
https://doi.org/10.1145/3491101.3519784
https://doi.org/10.1145/3491101.3519784
https://doi.org/10.1145/3173574.3173948
https://doi.org/10.3897/rio.8.e89980
https://doi.org/10.3897/rio.8.e89980
https://doi.org/10.1145/1592761.1592779
https://doi.org/10.1145/3379337.3415895
https://doi.org/10.1145/3544548.3580848
https://doi.org/10.1145/3544548.3580848
https://doi.org/10.1145/3544548.3580726
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2016.2599030
https://doi.org/10.1109/TVCG.2015.2467091
https://doi.org/10.1145/3526113.3545642
https://doi.org/10.1145/3290605.3300684

FEDT

[72] Eldon Schoop, Michelle Nguyen, Daniel Lim, Valkyrie Savage, Sean Follmer,
and Bjorn Hartmann. 2016. Drill Sergeant: Supporting Physical Construction
Projects through an Ecosystem of Augmented Tools. In Proceedings of the 2016
CHI Conference Extended Abstracts on Human Factors in Computing Systems (CHI
EA ’16). Association for Computing Machinery, New York, NY, USA, 1607-1614.
https://doi.org/10.1145/2851581.2892429

[73] Valentin Schwind, Stefan Resch, and Jessica Sehrt. 2023. The HCI User Stud-
ies Toolkit: Supporting Study Designing and Planning for Undergraduates and
Novice Researchers in Human-Computer Interaction. In Extended Abstracts
of the 2023 CHI Conference on Human Factors in Computing Systems (CHI EA
’23). Association for Computing Machinery, New York, NY, USA, 1-7. https:
//doi.org/10.1145/3544549.3585890

[74] Ben Shneiderman. 2007. Creativity support tools: accelerating discovery and
innovation. Commun. ACM 50, 12 (Dec. 2007), 20-32. https://doi.org/10.1145/
1323688.1323689

[75] Ye Shu, Emmie Hine, Hugo Hua, Emery D. Berger, and Daniel W. Barowy.

PLATEAU 2024. SureVeyor: A Language for High-Quality Online Surveys.

Madlaina Signer, Alexandra Ion, and Olga Sorkine-Hornung. 2021. Developable

Metamaterials: Mass-Fabricable Metamaterials by Laser-Cutting Elastic Struc-

tures. In Proceedings of the 2021 CHI Conference on Human Factors in Computing

Systems (CHI °21). Association for Computing Machinery, New York, NY, USA.

https://doi.org/10.1145/3411764.3445666 event-place: Yokohama, Japan.

Samantha Speer, Ana P Garcia-Alonzo, Joey Huang, Nickolina Yankova, Carolyn

Rosé, Kylie A Peppler, James Mccann, and Melisa Orta Martinez. 2023. SPEER-

Loom: An Open-Source Loom Kit for Interdisciplinary Engagement in Math,

Engineering, and Textiles. In Proceedings of the 36th Annual ACM Symposium

on User Interface Software and Technology (San Francisco, CA, USA) (UIST ’23).

Association for Computing Machinery, New York, NY, USA, Article 93, 15 pages.

https://doi.org/10.1145/3586183.3606724

[78] Igor Steinmacher, Tayana Conte, Marco Aurélio Gerosa, and David Redmiles. 2015.
Social Barriers Faced by Newcomers Placing Their First Contribution in Open
Source Software Projects. In Proceedings of the 18th ACM Conference on Computer
Supported Cooperative Work & Social Computing (CSCW ’15). Association for
Computing Machinery, New York, NY, USA, 1379-1392. https://doi.org/10.1145/
2675133.2675215

[79] Jasper Tran O’Leary, Gabrielle Benabdallah, and Nadya Peek. 2023. Imprimer:
Computational Notebooks for CNC Milling. In Proceedings of the 2023 CHI Con-
ference on Human Factors in Computing Systems (CHI °23). Association for Com-
puting Machinery, New York, NY, USA. https://doi.org/10.1145/3544548.3581334
event-place: Hamburg, Germany.

[80] Jasper Tran O’Leary, Chandrakana Nandi, Khang Lee, and Nadya Peek. 2021.
Taxon: A Language for Formal Reasoning with Digital Fabrication Machines.
In The 34th Annual ACM Symposium on User Interface Software and Technology
(UIST °21). Association for Computing Machinery, New York, NY, USA, 691-709.
https://doi.org/10.1145/3472749.3474779 event-place: Virtual Event, USA.

[81] Hannah Twigg-Smith, Jasper Tran O’Leary, and Nadya Peek. 2021. Tools, Tricks,
and Hacks: Exploring Novel Digital Fabrication Workflows on #PlotterTwitter. In
Proceedings of the 2021 CHI Conference on Human Factors in Computing Systems
(CHI ’21). Association for Computing Machinery, New York, NY, USA. https:
//doi.org/10.1145/3411764.3445653 event-place: Yokohama, Japan.

[82] Chat Wacharamanotham, Lukas Eisenring, Steve Haroz, and Florian Echtler. 2020.

Transparency of CHI Research Artifacts: Results of a Self-Reported Survey. In

Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems

(CHI °20). Association for Computing Machinery, New York, NY, USA, 1-14.

https://doi.org/10.1145/3313831.3376448

Guanyun Wang, Ye Tao, Ozguc Bertug Capunaman, Humphrey Yang, and Lin-

ing Yao. 2019. A-line: 4D Printing Morphing Linear Composite Structures. In

Proceedings of the 2019 CHI Conference on Human Factors in Computing Systems

(CHI ’19). Association for Computing Machinery, New York, NY, USA, 1-12.

https://doi.org/10.1145/3290605.3300656

[84] Chenming Wu, Haisen Zhao, Chandrakana Nandji, Jeffrey L. Lipton, Zachary
Tatlock, and Adriana Schulz. 2019. Carpentry compiler. ACM Trans. Graph. 38, 6,
Article 195 (nov 2019), 14 pages. https://doi.org/10.1145/3355089.3356518

[85] Junichi Yamaoka, Ryuma Niiyama, and Yasuaki Kakehi. 2017. BlowFab: Rapid
Prototyping for Rigid and Reusable Objects Using Inflation of Laser-Cut Surfaces.
In Proceedings of the 30th Annual ACM Symposium on User Interface Software
and Technology (UIST ’17). Association for Computing Machinery, New York, NY,
USA, 461-469. https://doi.org/10.1145/3126594.3126624 event-place: Québec
City, QC, Canada.

[86] Zeyu Yan, Tingyu Cheng, Jasmine Lu, Pedro Lopes, and Huaishu Peng. 2023.

Future Paradigms for Sustainable Making. In Adjunct Proceedings of the 36th

Annual ACM Symposium on User Interface Software and Technology (San Francisco,

CA, USA) (UIST ’23 Adjunct). Association for Computing Machinery, New York,

NY, USA, Article 109, 3 pages. https://doi.org/10.1145/3586182.3617433

Zeyu Yan and Huaishu Peng. 2021. FabHydro: Printing Interactive Hydraulic De-

vices with an Affordable SLA 3D Printer. In The 34th Annual ACM Symposium on

User Interface Software and Technology (UIST °21). Association for Computing Ma-

chinery, New York, NY, USA, 298-311. https://doi.org/10.1145/3472749.3474751

[76

[77

[83

[87

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

event-place: Virtual Event, USA.

[88] Haisen Zhao, Max Willsey, Amy Zhu, Chandrakana Nandi, Zachary Tatlock,

Justin Solomon, and Adriana Schulz. 2022. Co-Optimization of Design and
Fabrication Plans for Carpentry. ACM Trans. Graph. 41, 3, Article 32 (mar 2022),
13 pages. https://doi.org/10.1145/3508499

https://doi.org/10.1145/2851581.2892429
https://doi.org/10.1145/3544549.3585890
https://doi.org/10.1145/3544549.3585890
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/1323688.1323689
https://doi.org/10.1145/3411764.3445666
https://doi.org/10.1145/3586183.3606724
https://doi.org/10.1145/2675133.2675215
https://doi.org/10.1145/2675133.2675215
https://doi.org/10.1145/3544548.3581334
https://doi.org/10.1145/3472749.3474779
https://doi.org/10.1145/3411764.3445653
https://doi.org/10.1145/3411764.3445653
https://doi.org/10.1145/3313831.3376448
https://doi.org/10.1145/3290605.3300656
https://doi.org/10.1145/3355089.3356518
https://doi.org/10.1145/3126594.3126624
https://doi.org/10.1145/3586182.3617433
https://doi.org/10.1145/3472749.3474751
https://doi.org/10.1145/3508499

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

A Modeling 10 Exemplar Papers’ Experiments

To demonstrate our language’s flexibility, we have replicated all described experiments from 10 exemplar papers. These are fully-compileable
examples, although we have only done end-to-end replication with the 2 described in Section 4.1.2. For each of these papers and each
experiment therein, we present (1) the text of the original paper, (2) a replication in FEDT code that we created on our own, and (3) a
replication after discussion with the original author (where applicable), along with notes on changes made. For the original text, we have
transcribed it to the best of our ability without having access to source; we focus on reproducing only text and not figures or references, i.e.,
reference numbers are from the original papers and do not correspond to our bibliography. Some text formatting has been adapted to fit
within the appendix structure, e.g., section titles have been changed to italic text. The samples are also available in our public repository
(Section 4.1.2). Note that for margin considerations, we have added line breaks in the programs when necessary, but they are otherwise
identical to what is in our repository.

A.1 Paper 1: ./trilaterate
Adapted from Schmitz, et al., 2019 [71].

A.1.1 Experiment: Touch Location Identification. This experiment uses a single printed object with several interaction points, which users
touch in a given sequence after a calibration task.

Original Paper Description. To evaluate our approach, we conducted quantitative evaluations on the sensing of 3D position and force.
While research frequently utilizes mechanical apparatuses to evaluate capacitive sensing (cf. [17, 66]), we opted out for a user study with 12
participants (9m, 3f, mean age 27.3) to account for inter-individual differences in users’ capacitive responses.

3D Position Since a proper 3D position estimate is crucial for the quality of touch and hover input, we evaluated both in a single study. We
were interested in the effects of the following two factors on 3D-printed capacitive trilateration: (1) the coverage, i.e. the number of electrodes
that cover a surface point without being shielded by another trace or shield, and (2) the distance, i.e the mean distance of all electrodes to
the respective surface point. To that end, we generated a pyramid (length 8 cm, height 6 cm, ground to earth) with eight electrodes and
distributed seven target positions on the surface (see Figure 6) such that they cover all combinations of the independent variables coverage
(high vs. low) and distance (near vs. far): Positions 2, 3 and 4 are near electrodes (mean distance < 11.24 mm) and highly covered (up to four
electrodes). Position 1 is also highly covered, but the electrodes are far distant (mean distance 14.34 mm). Positions 5, 6, and 7 are lowly
covered (only two to three electrodes) because the electrodes are partially blocked by traces and shields from the viewpoint of the position.
In contrast to position 5 and 7, position 6 is nearer to the electrodes (mean distance 15.01 mm vs. 20 mm).

While the shape of the object is commonly an important factor for capacitive sensing, the trilateration approach is independent of the
non-interactive, insulating surface that covers the electrodes, as the differences in measurements are accounted for through the calibration.
Since an informal test confirmed this assumption, we did not investigate the effect of object shape and opted out for the pyramid shape in
order to make it easier for the participants to localize the target positions.

Setup & Task To be able to perform tests with multiple participants in a repeatable and comparable way, the object was fixed on a wooden
plate (see Figure 6). Participants received an introduction to the system before exploring it freely until they felt comfortable. Then, they
calibrated the system by touching randomly-generated positions on the pyramid surface. Between tests performed by the same participant,
the system was not recalibrated. Each participant was instructed to repeatedly touch the seven target positions ten times per position
(counterbalanced using Balanced Latin Square), leading to a total of 840 samples. All target positions were marked on the object to give the
participants an exact reference (see Figure 6B). Further, the position to be touched next was highlighted on a virtual model shown on screen.
While touching the position, the participant triggered the data recording with a key press.

Results & Discussion As the dependent variable, we analyzed the measurement error, i.e. the Euclidean distance between a target position
and the measured 3D point reported by the system, using a two-way repeated measures ANOVA. When significant effects were revealed, we
used Bonferroni corrected pairwise t-tests for post-hoc analysis. We report and classify the effect size 5? according to [9].

The analysis revealed that the distance of electrodes had a highly significant (F11; = 105.44, p < .001, #? = .587) influence on the 3D
position estimate with a large effect size. Post-hoc tests confirmed significantly smaller errors for the near distance conditions compared
to the far conditions (see Figure 7). Moreover, we found that the coverage of electrodes had a significant (Fy1; = 11.23, p < .05, 7% = .071)
influence on the 3D position estimate with a medium effect size. Posthoc tests confirmed significantly smaller errors for the high coverage
condition compared to the low coverage condition. Further, we found an interaction effect with a small effect size between the factors (Fy 11
=7.4,p < .05, 1% = .044).

The analysis shows that electrodes should be placed as near as possible to the surface of the object. Also, coverage of at least four electrodes
is crucial for a lower error. Hence, the routing algorithm should avoid voxels that are in line-of-sight between a surface point and other
electrodes.

Replication in FEDT. To replicate this experiment in FEDT, we created a new Measurement tool to represent the custom capacitance-
measuring system that was used for the paper. We also created a latinsquare function that generates Latin Squares.

class CustomCapacitanceSystem:
capacitances = [Measurement(

FEDT UIST ’25, September 28-October 1, 2025, Busan, Republic of Korea

name="capacitance",
description="The capacitance of the object on a specific electrode.",
procedure="""

Have the user touch the object, then capture the output.
units="pF",
feature=f"electrode {i}") for i in range(7)]

@staticmethod
def measure_capacitances(obj: RealWorldObject, feature: str='"') -> BatchMeasurements:
instruction(f"Measure object #{obj.uid}.", header=True)

return BatchMeasurements.multiple(obj, set(CustomCapacitanceSystem.capacitances))

def latinsquare(n):

k=n+1

sq = [1

for i in range(1, n + 1, 1):
sqrw = []
temp = k

while (temp <= n) :
sqrw. append(temp)
temp += 1

for j in range(1, k):
sqrw.append(j)

k -=1

sq.append(sqrw)

return sq

@fedt_experiment
def placement_response():

geometry_file = VolumeFile("pyramid.stl")

for coverage_condition in ['high', 'low']:

for distance_condition in ['near','far']:

for mirror_condition in range(1,2):

StlEditor.edit(geometry_file, f"add an electrode with coverage {coverage_condition}
and distance {distance_condition}")

unsure if this was generated specifically in this way, or if the pyramid was just taken as given
designed geometry to cover the conditions

electrodes = list(range(7))

fabbed_object = Printer.fab(GeometryFile("pyramid.stl"))
raw_results = BatchMeasurements.empty()
test_values = BatchMeasurements.empty()

for participant in Parallel(range(12)):

for repetition in Series(range(1)): # not sure how many random touches were required

User.do(fabbed_object, f"touch electrode #{random.choice(electrodes)}, rep #{repetition}",
participant)

for touch in Series(latinsquare(len(electrodes))[participant % len(electrodes)]): # how truncated?
User.do(fabbed_object, f"touch electrode #{touch}", participant)
raw_results += CustomCapacitanceSystem.measure_capacitances(fabbed_object)
test_values += CustomCapacitanceSystem.measure_capacitances(fabbed_object)

analyze(raw_results.get_all_data())

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

some processing to the test values...
analyze(test_values.get_all_data())

Corrected Experiment. The major correction we had to make was to use the same physical object for this experiment and the next. Our
other assumptions (e.g., about Latin Square truncation) were correct.

PYRAMID = None

def get_pyramid():
global PYRAMID
fabbed_object = PYRAMID
if PYRAMID is None:
geometry_file = GeometryFile("pyramid.stl")

for coverage_condition in Parallel(['high','low']):
for distance_condition in Parallel(['near','far']):
for mirror_condition in Parallel(range(1,2)):
StlEditor.modify_design(geometry_file, "electrode",
"coverage {coverage_condition} and distance {distance_condition}")

fabbed_object = Printer.fab(geometry_file)

PYRAMID = fabbed_object
return PYRAMID

@fedt_experiment
def placement_response():
electrodes = list(range(7))

fabbed_object = get_pyramid()

raw_results = BatchMeasurements.empty()
test_values = BatchMeasurements.empty()

for participant in Parallel(range(12)):
for repetition in Series(range(1)):
the same number of repetitions per participant, but not sure of the number
User.do(fabbed_object, f"touch electrode #{random.choice(electrodes)}, rep #{repetition}", participant)
for touch in Series(latinsquare(len(electrodes))[participant % len(electrodes)]):
User.do(fabbed_object, f"touch electrode #{touch}", participant)
raw_results += CustomCapacitanceSystem.measure_capacitances(fabbed_object)
test_values += CustomCapacitanceSystem.measure_capacitances(fabbed_object)

analyze(raw_results.get_all_data())
some processing to the test values...
analyze(test_values.get_all_data())

A.1.2 Experiment: Touch Force Identification. This experiment uses an identical object to experiment 1, and users press it with varying
levels of force several times, after a calibration task.

Original Paper Description. The same participants continued the previous study to assess force accuracy (without recalibration). As we
wanted to evaluate the force accuracy without interference by non-linear deformation effects of the flexible structure, we opted out for
position 3 (see Figure 6B). The central location of this position allows for a linear and continuous deformation.

The object allows for a maximal deformation at target position 3 of approx. 5 mm with moderate force. However, in contrast to the
position tests, there is no fixed reference scale for the subjective force exerted by a participant. Each participant can perceive the applied
force differently or is not at all able to exert the maximum force of another participant. Therefore, each participant sets an individual force
scale by first applying a maximum and then a minimum force, confirming each by pressing a key. The test samples are then taken by asking
the participant to set a specific target force level (10 % to 90 % in 20 % steps) displayed on a screen and confirm it by pressing a key. The
current force applied by the participant is displayed as a reference. Each participant was instructed to set each force level seven times.

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

The results of the force tests across all participants are depicted in Figure 8. For 10 % target force, the system reported in average 13.12 %
(SD 3.17 %). The average for 30 % target force was 31.25 % (SD 4.7 %) and 48.41 % (SD 3.77 %) for 50 % target force. For higher target forces of
70 % and 90 %, the system reported 68.36 % (SD 10.15 %) and 88.61 % (SD 10.78 %). Of note is, that the mean distance between target and
measured force level is 1.8 % (SD 0.76 %). That is, the participants hit the desired force level in average within 1.8 %. On a scale of 5 mm (0 % —
100 %), 1.8 % corresponds to a distance resolution of 0.09 mm (5 mm * 0.018).

In summary, our results show that for highly covered, near distance conditions, multiple 3D positions and levels of force applied by users
can be reliably distinguished.

Replication in FEDT.

@fedt_experiment
def force_response():
fabbed_object = Printer.fab(GeometryFile("pyramid.stl")) # same single object for both experiments?

ground_truth = BatchMeasurements.empty()
test_values = BatchMeasurements.empty()

forces = list(arange(10,90+include_last,20))

for participant in Parallel(range(10)):
for force_level in Parallel([0,100]):
User.do(fabbed_object, f"touch the top with {force_level}% force", participant)
ground_truth += CustomCapacitanceSystem.measure_capacitances(fabbed_object)
for force in Series(7xlatinsquare(len(forces))[participant % len(forces)]):
User.do(fabbed_object, f"touch with force {force}", participant)
test_values += CustomCapacitanceSystem.measure_capacitances(fabbed_object)

analyze(ground_truth.get_all_data())
some processing to the test_values...
analyze(test_values.get_all_data())

Corrected Experiment. The major correction to this experiment was changing the way in which we ordered touches to participants: we
had assumed that the touches were counterbalanced as in the first experiment, but the author indicated that they were fully random across
seven repetitions.

@fedt_experiment
def force_response():
fabbed_object = get_pyramid()

ground_truth = BatchMeasurements.empty()
test_values = BatchMeasurements.empty()

forces = list(arange(10,90+include_last,20))

for participant in Parallel(range(12)):
for force_level in Parallel([0,100]):
User.do(fabbed_object, f"touch electrode #3 with {force_level}% force", participant)
ground_truth += CustomCapacitanceSystem.measure_capacitances(fabbed_object)
seven_repetitions = forces*7
for force in Series(shuffle(seven_repetitions)):
User.do(fabbed_object, f"touch with force {force}", participant)
test_values += CustomCapacitanceSystem.measure_capacitances(fabbed_object)

analyze(ground_truth.get_all_data())
some processing to the test_values...
analyze(test_values.get_all_data())

A.2 Paper 2 : AirLogic
Adapted from Savage and Tejada, et al., 2022 [69].

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

A.2.1 Experiment: Air Loss in Widgets. This experiment prints several widgets and pushes air through them at different pressures, measuring
preservation of airflow for each.

Original Paper Description. We empirically evaluated widget air operating requirements and losses, as well as the effects of print orientation
and internal air channel bed angles. Using an anemometer and pressure sensor, we recorded airspeed into and out of our input and logic
widgets at various input levels, airspeed through a single widget type with various printing parameters, and optimal activation pressures for
our output widgets.

These experiments highlight two qualities of our designs: airflow needs and printing requirements. Taken together, the findings can
inform mass flow needed for a given device, how widgets are best arranged for printing, and widget chaining possibilities.

We used a JunAir 2000-40PD air compressor, a Festo MS4-LR1/4-D5-AS valve, an analog Panasonic PS-A (ADP5151) barometric sensor,
and a Kestrel 3500 NV Pocket Weather Anemometer. We printed encapsulated versions of our widgets, connecting their output channels
to our barometric pressure sensor and anemometer with of-the-shelf rubber tubes, OD 6 mm, ID 5 mm. Using the measured airspeed,
cross-sectional area of our tubes, and density of air, we calculate and report mass flow rate [40] in kg/s. For the printing parameters test, we
printed twenty-five copies of our OR widget: four sets of five with the internal tubes angled 0-90 degrees from the airflow direction, and five
total with printed internal pipes of bend radiuses from 0-20 mm before the gates.

Air loss in widgets Our tests showed that in general we lose proportionally less airflow when powering our systems with lower airflow
(see Figure 7). On average, when powered with 5e-5 kg/s of air, our logic and input widgets lost 33.1% of the airflow, but at 18e-5 kg/s they
lost 48.0%. This is likely related to laminarity: some widgets may work best when airflow is closer to laminar, such that it “sticks” properly to
the interior walls of the printed tubes. Our logic widgets tended to lose less airflow than our input widgets (26.8% vs. 47.6%), with the XOR
widget performing exceptionally well (average loss for non-XOR logic gates: 34.9% vs. 7.38% for XOR). We hypothesize this is related to
XOR’s relative insensitivity to turbulence (AND is sensitive due to the two-jet interaction, OR is sensitive due to its escape valve geometry).
The touch input widget also performed very well, likely because it can be arbitrarily well-sealed at the top—a squishy finger can close an air
escape more completely than a rigid piece of plastic. We did not evaluate the pressure losses of our output widgets, as they are intended to
be the last element in our transits. While we did not formally measure the escapes out the “wrong” holes, we experienced that with the
tested gates there was very little “erroneous” air signal. We did experience more erroneous signal with the multi-way AND gate in our demo
application (see Discussion). The button seemed to pass the most signal of our inputs while in the un-pressed configuration, likely since the
cap is only slightly above the hole.

We thus recommend powering AirLogic devices with as little airflow as possible, given the constraints of downstream widgets.

Replication in FEDT.

@fedt_experiment
def airflow_gatetypes():
logic_gate_files = ['and.stl', 'or.stl', 'not.stl', 'xor.stl']
input_files = ['touch.stl', 'button.stl', 'rocker.stl',
'dial.stl', 'slider.stl']
all_widget_files = logic_gate_files + input_files

results = BatchMeasurements.empty()
for stl in Parallel(all_widget_files):
fabbed_object = Printer.fab(GeometryFile(stl))
for input_massflow in Series(['5e*-5','9.5e*-5"',"'14e*-5","18.5e*-5"']):
instruction(f"set the air compressor to {input_massflow} and connect the object")
results += Anemometer.measure_airflow(fabbed_object, f"input massflow at {input_massflow}")

it's possible this is two experiments?

analyze([result in results if result.related_object in logic_gate_files])
analyze([result in results if result.related_object in input_files])
analyze(results.get_all_data())

Corrected Experiment. No corrections were required.

A.2.2 Experiment: Air Loss from Print and Pipe Curvature. This experiment evaluates different geometry parameters to determine how they
affect air loss.

Original Paper Description. Air loss from print orientation and printed pipe curvature Overall, more gradual printed curvatures led to better
preservation of airflow in our widget designs, with losses ranging from 21.9% at 20 mm radius to 43.5% at 0 mm radius (see Figure 8). We saw
no distinguishable pattern from printing angle (see Figure 9), in spite of having many datapoints; loss pattern were fairly consistent across
all printings with the same orientation, but there was no progression tied to the specific angle. We suspect internal printing artifacts, e.g.,

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

how the layers of the printer met up with the internal geometry, affected jet formation at some orientations. The gates printed at 0, 22.5, and
90 degrees performed uniformly well (losing 27.0-30.5% of airflow on average).

We thus suggest including gradually-curving pipes where possible; more work is needed to understand the best printing orientation given
devices’ complex internal geometry.

Replication in FEDT. While this is written as a single experiment, we broke it into two functions for simplicity.

@fedt_experiment
def or_orientations():
or_gate = GeometryFile('or.stl')

fabbed_objects = []

results = BatchMeasurements.empty()
for print_angle in Parallel(arange(0,90+include_last,22.5)):
rotated_gate = StlEditor.rotate(or_gate, print_angle)
for repetition in Parallel(range(4)):
fabbed_object = Printer.fab(rotated_gate, repetition=repetition)
fabbed_objects.append(fabbed_object)
for fabbed_object in Parallel(fabbed_objects):
for input_massflow in Series(['5e*-5','9.5e*-5"',"'14e*-5","'18.5e*-5"']):
instruction(f"set the air compressor to {input_massflow} and connect the object")
results += Anemometer.measure_airflow(fabbed_object, f"input massflow at {input_massflow}")

analyze(results.get_all_data())

@fedt_experiment
def or_bendradius():
or_gate = GeometryFile('or.stl')

results = BatchMeasurements.empty()
for bend_radius in Parallel(arange(@,20+include_last,5)):
gate_with_bend = StlEditor.modify_design(or_gate, "bent inlet", bend_radius)
fabbed_object = Printer.fab(gate_with_bend)
for input_massflow in Series(['5e*-5','9.5e*-5"',"'14e*-5","18.5e*-5"']):
instruction(f"set the air compressor to {input_massflow} and connect the object")
results += Anemometer.measure_airflow(fabbed_object, f"input massflow at {input_massflow}")

analyze(results.get_all_data())
Corrected Experiment. No corrections were required.

A.2.3 Experiment: Optimal Output Pressures. This experiment prints several output widgets and determines the minimum and maximum
airflow that activates them.

Original Paper Description. Optimal output pressure Most of our output widgets operate best when actuated with pressures from 5+ kPa.
They can likely be tuned for particular pressure systems (e.g., by adjusting counterweights or pressure-exposed surface area and shape), but
in the particular configurations we tested we found the pin display works at 13.5+ kPa, the vibration motor works from 13.5-35 kPa, the
whistle works from 5-7 kPa, and the wiggler wiggles at .3 kPa, working as a permanently-activated pin display above that.

Given the results of our previous investigations, designers can calculate the amount of input pressure required in their designs in order to
optimally actuate their desired outputs.

Replication in FEDT.

@fedt_experiment

def output_airneeds():
output_widgets = ['pin_display.stl', 'vibration_motor.stl', 'whistle.stl', 'wiggler.stl']
epsilon = '.1kPa' # ?

airflow = BatchMeasurements.empty()

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

for widget in Parallel(output_widgets):
fabbed_object = Printer.fab(GeometryFile(widget))

instruction(f"connect object #{fabbed_object.uid} to
instruction(f"increase the air pressure by {epsilon}

airflow += Anemometer.measure_airflow(fabbed_object,

instruction(f"increase the air pressure by {epsilon}

airflow += Anemometer.measure_airflow(fabbed_object,

analyze(airflow.get_all_data())

Corrected Experiment. No corrections were required.

A.3 Paper 3 : BlowFab
Adapted from Yamaoka, et al., 2017 [85].

A3.1
after inflation.

Savage, et al.

the air compressor", header=True)
at a time until the object starts to work")

'minimum working pressure')

at a time until the object stops working")

'maximum working pressure')

Experiment: Effect of B in Horizontal Bend. This experiment changes a parameter of the SVG file and determines the effect on bending

Original Paper Description. Horizontal Bending Mechanism The bending direction is vertical and horizontal to the sheet. The user can
generate intricate shapes by combining these methods. It is necessary to make a cut in the side of the sheet, as shown in Figure 13, to bend
the object horizontally (i.e., along the plane of the sheet). The curvature of the object was investigated by changing the ratio of A to C in
Figure 13. First, C was fixed at 10 mm and D was fixed at 14 mm, and the number of incisions made was 6. The objects were inflated by
changing the ratio of B in the range of 0.09 to 0.66 (this means 4 mm to 27.5 mm) when A was 1 (41 mm). We attempted to bend 5 times on
each object. As a result, as shown in Figure 14 a and c, the average angle of curvature was changed from 5.4°(SD = 0.8) to 38.2°(SD = 0.9).

Replication in FEDT.

@fedt_experiment
def effect_of_b_horizontal():

A =41
C =10
D =14
delta = (27.5-4)/3 # ? -> there are 3 values in the figure

results = BatchMeasurements.empty()
for B in Parallel(arange(4, 27.5+include_last, delta)):
linefile = SvgEditor.design(vars = {'A':A, 'B':B,
fabbed_object = Laser.fab(linefile)
for repetition in Series(range(5)):
fabbed_object = Human.
? -> not sure if it
fabbed_object = Human
? -> probably human
results += Protractor.
fabbed_object = Human.
? -> not sure if it
fabbed_object = Human.

is heat gun or plate

is heat gun or plate

'c':C,

'D':D})

post_process(fabbed_object, "heat with the heat gun")

.post_process(fabbed_object, "inject air to inflate the object")
does this, based on the video

measure_angle(fabbed_object, "overall bend")
post_process(fabbed_object, "heat with the heat gun")

post_process(fabbed_object, "flatten the object")

? -> it's not specified that they are flattened, but they must be

analyze(results.get_all_data())

Corrected Experiment. The number of objects fabricated was different from our guess based on the figures. Additionally, we have clarified
which tools were used to heat and inflate the devices, and that bend angle was extracted from photographs instead of directly from the

devices.

@fedt_experiment
def effect_of_b_horizontal():

A =41

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

c=10
D =14

delta = (27.5-4)/5 # only 3 shown in image, but 5 were tested

results = BatchMeasurements.empty()
for B in Parallel(arange(4, 27.5+include_last, delta)):
linefile = SvgEditor.design(vars = {'A':A, 'B':B, 'C':C, 'D':D})
fabbed_object = Laser.fab(linefile, material="PET")
for repetition in Series(range(5)):
fabbed_object = Human.post_process(fabbed_object, "heat with the heat plate")
fabbed_object = Human.post_process(fabbed_object,

"inject air with the air compressor to inflate the object")

instruction("slowly turn the valve on the air compressor to inflate just to the point of fullness")

results += Camera.take_picture(fabbed_object, "overall bend")
instruction("extract the bend angle from the photograph")

fabbed_object = Human.post_process(fabbed_object, "heat with the heat plate")
fabbed_object = Human.post_process(fabbed_object, "flatten the object")

analyze(results.get_all_data())

A.3.2 Experiment: Effect of Incision Number. This experiment edited the SVG files to have additional length and incisions, to understand

how this might affect bend angle

Original Paper Description. Moreover, when A is 41 mm, B is 14 mm and the number of incisions is 6, the object bent 22.1°0n an average

(SD = 0.8). When we changed the number of incisions to 12, the object bent 70.6°on an average (SD = 1.6).

From this experiment, the ratio of incisions and the curvature of the object can be described by the following equation (equation 1). In the
equation, 01 is the bent angle of the final product of horizontal bending, A is the length (mm) as shown in Figure 13A, B is the length (mm)

in Figure 13B, and i means the number of incisions.

01 = (((A/B) - .751)/—0.017) + 8.08i
Replication in FEDT.

@fedt_experiment
def effect_of_incision_number():

A = 41
B =14
c=10
D =14

results = BatchMeasurements.empty()
for num_incisions in Parallel([6,12]):

linefile = SvgEditor.design(vars = {'A':A, 'B':B, 'C':C, 'D':D, 'num_incisions':num_incisions})

fabbed_object = Laser.fab(linefile)

fabbed_object = Human.post_process(fabbed_object, "heat with the heat gun")

? -> not sure if it is heat gun or plate

fabbed_object = Human.post_process(fabbed_object, "inject air to inflate the object")
? -> probably human does this, based on the video

results += Protractor.measure_angle(fabbed_object,"overall bend")

analyze(results.get_all_data())

1

Corrected Experiment. We confirmed which equipment was used to heat the objects and inject air, and that the measurements were taken

from photographs instead of directly from the objects.

@fedt_experiment

def effect_of_incision_number():
A= 41
B =14

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

(@]
1

10
D =14

results = BatchMeasurements.empty()
for num_incisions in Parallel([6,12]1):
linefile = SvgEditor.design(vars = {'A':A, 'B':B, 'C':C, 'D':D, 'num_incisions':num_incisions})
fabbed_object = Laser.fab(linefile, material="PET")
fabbed_object = Human.post_process(fabbed_object, "heat with the heat plate")
fabbed_object = Human.post_process(fabbed_object, "inject air with the air compressor to inflate the object")
instruction("slowly turn the valve on the air compressor to inflate just to the point of fullness")
results += Camera.take_picture(fabbed_object, "overall bend")
instruction("extract the bend angle from the photograph")

analyze(results.get_all_data())

A.3.3 Experiment: Interplate Distance for Vertical Bend. This experiment explored adding rigid plate materials to inflating airbags to control
bend angle.

Original Paper Description. Vertical Bending Mechanism The user can bend an object automatically in a vertical direction (i.e., angular to
the plane of the sheet) by overlapping materials that have different softening points. In this experiment, polycarbonate was selected instead
of a kapton film. The softening point of polycarbonate is 120-140 °C. Therefore, when the sheet is heated to a temperature less than 120 °C,
only the PET layer becomes soft enough to bend. For this method, polycarbonate plates are placed as shown in Figure 16. The user makes
dents on the polycarbonate using a laser cutter. It is assumed that the two sheets bond mechanically when the PET material softens and
enters into the dents on the surface of the polycarbonate. The user designs an area of polycarbonate at both ends of an airbag.

The user can specify the bending direction depending on the placement of the polycarbonate: it is either on the front side or on the
backside. As shown in Figure 17, the curvature of objects was examined by changing the distance between the two polycarbonates. The size
of the molded object is 100 mm x 40 mm, the size of the airbag is 45 mm x 28 mm and the length of the polycarbonate is 8 mm. As a result,
when the distance (Figure 16 D) between two sheets was changed from 0 mm to 30 mm, the average angle changed from 100.3°(SD = 1.07) to
140.4°(SD = 1.01). We repeated the bending procedure 5 times on each object. From the results of this experiment, the distance between the
polycarbonates and the curvature of the object can be described by the following equation (equation 2). 62 is also the bent angle of the final
product of vertical bending and D is the length (mm) between the layers as shown in Figure 16.

02 = (D — 105.02) /—0.948 ()

Replication in FEDT.

@fedt_experiment

def effect_of_interplate_distance_vertical():
outer_size = (100, 40)
airbag_size = (45, 28)

results = BatchMeasurements.empty()
for distance in Parallel([0,30]):
linefile = SvgEditor.design(vars =
{'outer size': outer_size, 'airbag size': airbag_size, 'distance': distance})
instruction(f"place polycarbonate in the laser bed with spacing {distance}")
fabbed_object = Laser.fab(linefile)
for repetition in Parallel(range(5)):
fabbed_object = Human.post_process(fabbed_object, "heat with the heat gun")
? -> not sure if it is heat gun or plate
fabbed_object = Human.post_process(fabbed_object, "inject air to inflate the object")
? -> probably human does this, based on the video
results += Protractor.measure_angle(fabbed_object, "overall bend")
fabbed_object = Human.post_process(fabbed_object, "heat with the heat gun")
? -> not sure if it is heat gun or plate
fabbed_object = Human.post_process(fabbed_object, "flatten the object")
? -> it's not specified that they are flattened, but they must be
analyze(results.get_all_data())

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Corrected Experiment. We confirmed which tools were used for heating and inflation, and also that bend angle was again extracted from a
photograph. The authors also informed us that there were multiple copies of the objects manufactured.

@fedt_experiment

def effect_of_interplate_distance_vertical():
outer_size = (100, 40)
airbag_size = (45, 28)

results = BatchMeasurements.empty()
for distance in Parallel([0,30]):
for repetition in Parallel(range(2)):
linefile = SvgEditor.design(vars =
{'outer size': outer_size, 'airbag size': airbag_size, 'distance': distance})
instruction(f"place polycarbonate in the laser bed with spacing {distance}")
fabbed_object = Laser.fab(linefile, material="PET")
for repetition in Parallel(range(5)):
fabbed_object = Human.post_process(fabbed_object, "heat with the heat plate")
fabbed_object = Human.post_process(fabbed_object,

"inject air with the air compressor to inflate the object")
instruction("slowly turn the valve on the air compressor to inflate just to the point of fullness")
results += Camera.take_picture(fabbed_object, "overall bend")
instruction("extract the bend angle from the photograph")
fabbed_object = Human.post_process(fabbed_object, "heat with the heat plate")
fabbed_object = Human.post_process(fabbed_object, "flatten the object")

analyze(results.get_all_data())

A.4 Paper 4: CircWood
Adapted from Ishii, et al., 2022 [39].

A.4.1 Experiment: Materials. This experiment examined whether or not different materials and coatings could produce carbonized paths in
the lasercutter.

Original Paper Description. Materials To identify suitable wood materials on which carbon paths can be created with sufficient low
resistance to be used as electrical wiring, we tested various types of wood. We tested several types of lauan plywood and various solid woods
(lauan, Japanese cypress, paulownia, Magnolia obovata, Japanese cedar, basswood, beech, oak, and walnut). We also examined the effect of
coating the wood surface with a fire retardant that prevents burning and generates carbon. Ingredients of the fire retardant are ammonium
polyphosphate and ammonium sulfate. These are food additives and harmless both to the environment and to humans.

Lauan plywoods and solid woods are suitable materials for our method because the carbon paths formed on these materials have a high
conductivity. We can create carbon paths with usable conductivity on Japanese cypress solid woods by coating them with a fire retardant.
The use of a fire retardant also improves the conductivity of carbon paths on lauan solid wood. The application of a fire retardant to plywood,
on the other hand, reduces the conductivity of carbon paths. We assume this is due to a reaction that is caused by the glue between the
wood layers. As a result, the optimal materials are lauan solid woods coated by the fire retardant, followed by bare lauan plywoods and
fire-retardant coated solid woods of Japanese cypress. Since these materials differ in texture and various other characteristics, we can select
suitable materials for the project.

Figure 5 shows some examples of carbon paths that were produced on the tested wood surfaces. The conductive carbon paths are entirely
black and filled with charcoal grains, as shown in Figure 5 (a). In contrast, the non-conductive paths are not as black, and there are spaces
between the charcoal grains, as shown in Figure 5 (b). These non-conductive paths were either burned at high temperatures or were the
result of failure to create carbon at low temperatures, which hindered the production of sufficient conductive carbon. Non-conductive
carbon paths tend to be generated from hardwoods, such as beech, oak, and walnut, and very softwoods, such as cedar. In contrast, usable
conductive carbon tends to be generated from woods of moderate hardness, such as lauan and Japanese cypress.

Replication in FEDT.

@fedt_experiment
def test_materials():

materials = ["lauan solid wood", "lauan plywood", "Japanese cypress",
"paulownia", "Magnolia obovata", "Japanese cedar", "basswood",
"beech", "oak", "walnut"]

coatings = ['fire retardant', 'no coating']

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

line_file = SvgEditor.build_geometry(SvgEditor.draw_circle)

fabbed_objects: list[RealWorldObject] = []
for material in Parallel(materials):
for coating in Parallel(coatings):
instruction(f"get a piece of {material} with coating {coating}")
fabbed_objects.append(Laser.fab(line_file, material=material, coating=coating))
results = BatchMeasurements.empty()
for fabbed_object in Parallel(fabbed_objects):
results += Multimeter.measure_resistance(fabbed_object)
data = results.get_all_data()
return analyze(data)

Corrected Experiment. No corrections were required.
A.4.2 Experiment: Laser Offset. This experiment looked at laser focal point offsets and number of scans to minimize resistance.

Original Paper Description. Laser parameters We investigated the laser cutter’s setting parameters for efficient carbon production using
lauan plywood of 4 mm thickness. The thicknesses of the surface and the second layer of the plywood were approximately 0.5 mm and 3
mm, respectively. The laser-induced carbon was generated mainly on the surface and the second layer. This material generated the highest
conductivity carbon among the tested lauan plywoods. No fire retardant was applied in this examination because it would impair the
conductivity of the plywood, as discussed in the previous section. We used VD7050-60W (COMMAX Co., Ltd.) laser cutter as described in
Section 3.2.

First, we investigated the optimal wooden board position and found that the resistance of the generated carbon path was lowest at a
distance of 5 mm below the focal point. We also found that repeating the laser scan at high speed yielded better results than running the
laser once at low speed. When the laser cutter was operated at a low speed, adjusting the laser power became difficult, namely, either higher
power would burn the wood, or lower power would not generate any carbon.

Replication in FEDT.

@fedt_experiment

def test_height_vs_focal_point():
line_file = SvgEditor.build_geometry(SvgEditor.draw_circle)
results = BatchMeasurements.empty()

for focal_height_mm in Parallel(arange(9, 5+include_last)):
fabbed_object = Laser.fab(line_file, focal_height_mm=focal_height_mm, material='wood')
results += Multimeter.measure_resistance(fabbed_object)

data = results.get_all_data()

return analyze(data)

Corrected Experiment. We added a 6mm offset condition that was tested.

@fedt_experiment
def test_height_vs_focal_point():

results = BatchMeasurements.empty()

for focal_height_mm in Parallel(arange(@, 6+include_last)):
line_file = SvgEditor.build_geometry(SvgEditor.draw_line,
label_function=SvgEditor.labelcentre)
fabbed_object = Laser.fab(line_file, focal_height_mm=focal_height_mm, material='wood')
results += Multimeter.measure_resistance(fabbed_object)
data = results.get_all_data()
return analyze(data)

A.4.3 Experiment: Optimal Number of Scans. This experiment repeatedly scanned a laser over a fabricated object to find the best number of
scans for carbon generation.

Original Paper Text. We confirmed the optimal number of scans by repeating the laser scans consecutively. The resistance continued to
decrease until the fifteenth scan, but at the sixteenth scan, the carbon was burned off, and the resistance increased.

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Replication in FEDT.

@fedt_experiment
def test_optimal_number_of_scans():
line_file = SvgEditor.build_geometry(SvgEditor.draw_circle)
results = ImmediateMeasurements.empty()
resistance = 9999999999
best_result = resistance
num_scans = 0
while resistance == best_result:
num_scans = num_scans + 1
fabbed_object = Laser.fab(line_file, num_scans=num_scans, material="wood")
instruction("leave the material in the bed in between")
resistance = results.do_measure(fabbed_object, Multimeter.resistance)
resistance = float(resistance) if resistance else best_result
if not best_result or resistance < best_result:
best_result = resistance

data = results.dump_to_csv()
return analyze(data)

Corrected Experiment. No corrections were required.

A.4.4 Experiment: Laser Power and Speed. This experiment explored pairings of power and speed to find the easiest combination for
generating carbon on a particular material.

Original Paper Description. By fixing the material position and the number of laser scans to the optimal conditions (5 mm below the focus
and 15 scans), we investigated the generated carbon resistance by changing the laser power and the scan speed. We made four carbon paths
for the same power/speed and measured the resistance of each of them. Table 2 shows the average resistance value for each power/speed
setting value. Overall, the resistance was the lowest when the power was 50-70 % and the ratio of power to speed was 2:1. The lowest
resistance we measured was 30 Q/sq, which was realized when the power was 50 % (30 W), and the speed was 25 % (381 mm/s). We identified
these setting values as the optimal parameters and used them when implementing the applications.

When the wood type was changed, the parameters also changed slightly. For the thicker lauan plywood with three 1 mm and two 3
mm thick sheets stacked alternately, and for lauan solid wood, the optimal parameters of power and speed were the same, but the optimal
focal distance was 6 mm below the focal point. The lowest resistance value of the carbon on this type of lauan plywood panel was 75 Q/sq.
The resistance of the lauan solid wood was further reduced when a fire retardant was applied, with a minimum value of 25 Q/sq. Japanese
cypress coated with the fire retardant burned when the same parameters as for the lauan wood were used; hence, we further investigated the
optimal parameters. The results demonstrate that the optimal focal distance was 5 mm below the focal point and that running the laser eight
times at 30 % power (18 W) and 30 % speed (457 mm/s) was optimal. The lowest resistance value in this scenario was 76 Q/sq. Based on the
investigation above, Table 3 shows the final recommended settings of our process.

Replication in FEDT.

@fedt_experiment
def test_laser_power_and_speed():
speeds = arange(20,80+include_last,10)
powers = arange(10,50+include_last,5)
config_file = Laser.create_config(cut_speeds=speeds, cut_powers=powers)

line_file = SvgEditor.build_geometry(SvgEditor.draw_circle)
results = BatchMeasurements.empty()

for cut_speed in Parallel(speeds):
for cut_power in Parallel(powers):
for repetition in Parallel(range(4)):
fabbed_object = Laser.fab(line_file, config_file=config_file,
cut_speed=cut_speed, cut_power=cut_power,
color_to_setting=Laser.SvgColor.GREEN,
repetition=repetition,
material="wood")

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

resistance = Multimeter.measure_resistance(fabbed_object)
results += resistance
analyze(results.get_all_data())

Savage, et al.

Corrected Experiment. We pared down the tested conditions to those represented in the table; the authors confirmed that only these

“likely” settings were tried, rather than all settings.

@fedt_experiment
def test_laser_power_and_speed():
speeds_powers = [(50,50),

(45,50), (45,60),(45,70), (45,80),
(40,50),(40,60),(40,70), (40,80),
(35,50),(35,60),(35,70), (35,80),
(30,50),(30,60),(30,70),
(25,50),(25,60),
(20,40),
(15,40),
(10,20),(10,30)]

config_file = Laser.create_config(cut_speeds=[speed for speed,power in speeds_powers],
cut_powers=[power for speed,power in speeds_powers])

line_file = SvgEditor.build_geometry(SvgEditor.draw_line)
results = BatchMeasurements.empty()

for cut_speed, cut_power in Parallel(speeds_powers):
for repetition in Parallel(range(4)):
fabbed_object = Laser.fab(line_file, config_file=config_file,
cut_speed=cut_speed, cut_power=cut_power,
color_to_setting=Laser.SvgColor.GREEN,
repetition=repetition,
material="wood")
resistance = Multimeter.measure_resistance(fabbed_object)
results += resistance
analyze(results.get_all_data())

A.4.5 Experiment: Grain Direction. This experiment looked at carbon generation across versus along the grain of the plywood.

Original Paper Description. Effect of the grain direction The previous experiments were conducted by producing carbon paths along the
grain of the wood. In this experiment, we used thicker lauan plywood and fabricated a carbon path orthogonal to the wood grain using the
optimal parameters obtained in the previous section. The result showed a significant increase in resistance compared to the carbon made
along the grain (27300 Q/sq). This problem can be solved by arranging the carbon paths side by side to increase the area. We demonstrated
that the carbon paths conduct when wide/multiple paths are produced, namely, the conductivity of three side-by-side paths is almost

equivalent to the conductivity (105 ©/sq) under the along-the-grain condition.

Replication in FEDT.

@fedt_experiment
def test_grain_direction():
line_file = SvgEditor.build_geometry(SvgEditor.draw_circle)
fabbed_objects: list[RealWorldObject] = []
for orientation in Parallel(["orthogonal","along grain"]):
instruction("orient the wood {}".format(orientation))
fabbed_objects.append(
Laser.fab(line_file, orientation=orientation))
results = BatchMeasurements.empty()
for fabbed_object in Parallel(fabbed_objects):
results += Multimeter.measure_resistance(fabbed_object)
data = results.get_all_data()
return analyze(data)

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Corrected Experiment. The authors told us that, instead of rotating the piece of wood in the bed, they instead used a file with two orthogonal
lines.

@fedt_experiment
def test_grain_direction():
line_file = SvgEditor.design("a file with two perpendicular lines")
fabbed_objects: list[RealWorldObject] = []
for orientation in Parallel(["orthogonal","along grain"]):
instruction("orient the wood {}".format(orientation))
fabbed_objects.append(
Laser.fab(line_file, orientation=orientation))
results = BatchMeasurements.empty()
for fabbed_object in Parallel(fabbed_objects):
results += Multimeter.measure_resistance(fabbed_object)
data = results.get_all_data()
return analyze(data)

A.4.6 Experiment: Change Over Time. This experiment looked at changes in resistance over time.

Original Paper Description. Resistance change over time We investigated the resistance change of the carbon path that was fabricated using
CircWood over time. The resistance change after coating with varnish was also investigated because we assumed that the varnish, which is
frequently used to protect surfaces in woodworking DIY, would prevent the resistance of the carbon path from increasing. We used oil-based
varnish spray. We created four carbon paths for each of the two conditions, varnished or unvarnished, on lauan plywood with a surface
thickness of 0.5 mm and an inner pile thickness of 3 mm. Laser parameters used to create the carbon were optimal values described in
Section 5.1.2. We then measured the resistance of each sample over six months.

Figure 6 shows the transition of the average resistance increase rate. After six months, the resistance of the unvarnished samples increased
by 1.45 times, while the varnished samples increased by 1.3 times. Judging from the graph, the resistance value seems to be stable around
after three months. Although the coating had no significant effect on the resistance value when the carbon paths were first created, the
graph shows that varnish coating reduces the increase in resistance in the long term. Moreover, the coating is useful as it increases the
physical strength of the circuit and prevents finger contamination by the carbonized touch sensor.

Replication in FEDT.

@fedt_experiment
def test_change_over_time():
line_file = SvgEditor.build_geometry(SvgEditor.draw_circle)
fabbed_objects = []
for post_process_condition in Parallel(['varnished', 'unvarnished']):
for repetition in Parallel(range(4)):
fabbed_object = Laser.fab(line_file, repetition=repetition)
fabbed_objects.append(Human.post_process(fabbed_object, post_process_condition))
results = BatchMeasurements.empty()
for wait_months in Series(range(0, 6)):
fabbed_objects = Environment.wait_up_to_time_multiple(fabbed_objects, num_months=wait_months)
for fabbed_object in Parallel(fabbed_objects):
results += Multimeter.measure_resistance(fabbed_object)
analyze(results.get_all_data())

Corrected Experiment. No corrections were required.

A.5 Paper 5: Design, Mould, Grow!

Adapted from Gough, et al., 2023 [31]. We ignore an experiment reported in Section 3 relating to mushroom species and substrates, as there
was no digital fabrication component involved.

A.5.1 Experiment: Geometric Features. This experiment printed several trays and moulded mycomaterial from them to determine how well
different geometric features could be preserved.

Original Paper Description. To evaluate how different geometric features are translated into the grown object, we designed three 3D
models, first with a variety of features, the ramps and patterns trays shown in Figure 3 A and B respectively, and a tray with circular step
features of varying heights shown in Figure 3 C. Each tray design was used to grow two 3D models, and with two different conditions (with
and without inclusions) as shown in Figure 3-Table. Grown models were scanned and cross-sections of the scans were compared to the

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

original design. Figure 4 A to D shows a circular tray with step structure of varying heights (lmm to 5mm) as the design, 3D print, a grown
model and a scanned model. Figures 3 A and B further show the details of the 3D printed trays with different geometric features such as
spherical, corners, ramps, repeating lines and different kinds of textures. The radius of the spherical geometries ranged from 2mm to 7mm
and the smallest cuboid features were 5 x 5mm. The features we compare included convex and concave shapes. For each tray two variants
were grown, first using only the substrate in the grow kit and another that includes waste coffee grounds at a ratio of 10:3 by weight. From
the circular design, an third object was grown and treated with glycerine, which has been shown to alter the properties of the material by
retaining moisture [15].

Geometric Properties

To further analyse geometric changes after the drying process, samples were 3D scanned using a Schining EinScan Pro 2X with models
were captured using EXScan Pro software (Figure 4 D). We extracted a series of profiles (cross-sections) from each 3D scan and quantitatively
compared them to the corresponding profile of the original design. For the circular tray, 11 slices of profiles were extracted at rotational
displacement of 7.5° as shown in Figure 4 E. For the patterns tray, 16 slices of profiles were extracted at linear displacement of 0.1mm between
each other showing concave and convex patterns visible in Figure 4 F.

For the circular tray, the 3D scans of models with different treatments were separately analysed. The three materials samples are named
for the substrate materials: Plain Substrate (PS), Coffee-inclusion Substrate (CS), and the Glycerine-plain Substrate (GS). For the patterns tray,
only the outline of the sample using coffee inclusions was analysed for Concave and Convex (CC) sections, as it showed noticeably superior
performance to the sample with no coffee inclusion.

The evaluation was performed by overlapping the profiles of final samples over the original 3D design. Along the outline of the grown
material, the absolute error with respect to the original design (in mm) is averaged along evenly spaced intervals across the cross-section.
Fig 4 G, H, and I show the profiles of cross-sections with CS, GS and CC conditions respectively. The outlines in each comparison show the
mean pattern generated by all the profiles (purple), and the corresponding 95% confidence interval at each point (dashed line). These outlines
indicate the ability of each material to replicate the intended pattern. The average mean absolute error (MAE) is shown in Figure 4 J. It is
evident that including coffee grounds improves the ability of the material to replicate sharp edges and flat surfaces. We further compared the
MAE on different curvature radii and types (convex, protruding out vs. concave, denting in) along the condition CC. CX represents convex
and CV1 to CV3 represents three concave radii 7mm, 5mm, and 3mm. Results show that convex features have higher conformity with the
original design than the concave, and we recommend a minimum feature size of 5mm (Fig 4 K).

Changes in Dimension

To measure changes in volume during the drying process we compared the final dimensions of the dried myco-material to the dimensions
of the 3D printed tray. For the ramps tray in Figure 3 A and its outcome Fig. 5 A Left, the tray was measured to be 128 x 127.5mm, and the
myco-material showed a reduction of 93.0% x 92.5% and 92.2% x 91.8% for no inclusion and coffee inclusion respectively. The patterns tray
shown in Figure 3 B (outcome in Figure 5 A Right) was measured to be 128 x 123mm, with the myco-material showing a reduction in volume
0f 92.2% x 91.9% and 90.6% x 91.1% for PS and CS respectively. The circular tray shown in Figure 3 C (outcome Fig. 4 C and E) has a radius of
118mm. All three myco-material samples were measured to be 109 x 109mm, a 92.4% reduction in length along the two straight edges.

Qualitative Observations

Two grown designs are shown in Figure 5 A. We observed slight warping occurred during the drying phase. Previous studies have
compared the results when the material is pressed as it is drying [2], which would reduce warping. However, as the object shrinks during
drying, this would put strain on some fine details on the material if it were to be dried inside the 3D printed mould, which may also start
to soften at drying temperatures, depending on the filament used. It’s also worth noting that the 3D prints itself had some geometric
imperfections, which occurred during printing that were rendered in the material.

Samples with coffee ground inclusions showed significantly more detail in the final product. The walls between the square indentations,
measuring 1.33mm width, can be clearly seen in Figure 5 A-I, but are not visible in the sample grown without the coffee ground inclusion.
Additionally, the layers from the 3D prints are clearly visible in both types (layer height was set to 0.30mm during slicing), but more
pronounced in the form with inclusions as seen in Figure 5 A-II. The Patterns sample in Figure 5 A-III & -IV shows larger protrusions being
rendered clearly by the material, as well as surface textures. Fine details were possible, but can be difficult to remove from a 3D printed
mould as mycelia may find its way between the layers of the mould. It may be possible to use other methods to improve fine details by using
a higher resolution 3D print technology (e.g. SLA resin). We also noted that if pieces of the designed object are stuck or broken during the
demoulding stage, they can be repaired by simply putting them back in place, and the mycelial network will fuse the pieces together during
the open growth stage. We did not evaluate the strength of this bond.

Replication in FEDT.

class CustomModellingTool (DesignSoftware):
call the custom modelling tool that they created
@staticmethod
def sphere(radius: float=10.) -> GeometryFile:
return design('custom.stl', GeometryFile,
{'target_radius':radius},
f"use the custom tool to model a sphere with radius {radius}")

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

@staticmethod
def create_design(features: dict[str,object]) -> GeometryFile:
return design('custom.stl', GeometryFile,
features,
f"use the custom tool to model {features}")

@staticmethod
def modify_design(design: GeometryFile,
feature_name: str, feature_value: str|int) -> GeometryFile:
from control import MODE, Execute
file_location = design.file_location
if isinstance(MODE, Execute):
file_location = input(f"What is the location of the modified geometry file?")

design.updateVersion(feature_name, feature_value)
design.file_location = file_location
return design

def prep_materials():
instruction("remove pathogens by pouring boiling water through strainer™)
instruction("bulk growth - 1 week")
instruction("break up for forming growth - 3 days")

@fedt_experiment

def geometric_features():
shrinkage_results = BatchMeasurements.empty()
scanning_results = BatchMeasurements.empty()

geometries = [GeometryFile(f) for f in ['ramps.stl', 'circular.stl', 'patterns.stl']]
prep_materials() # how was this timed? just constant prepping in rotation, or?

for geometry_file in Parallel(geometries):
mould = Printer.fab(geometry_file)
for myco_material in Series(['30% coffee inclusions', 'no inclusions']):
fabbed_object = Human.post_process(mould, f"mould mycomaterial {myco_material}")
Environment.wait_up_to_time_single(fabbed_object, num_weeks=1)
instruction("remove the material from the mould")
Environment.wait_up_to_time_single(fabbed_object, num_days=3)
instruction("allow the material to dry in a 50-80C oven")
Environment.wait_up_to_time_single(fabbed_object, num_weeks=7) # 1 day to 1 week
shrinkage_results += Calipers.measure_size(fabbed_object, "important dimension")
if geometry_file.file_location != 'ramps.stl':
scan = Scanner.scan(fabbed_object)
scanning_results += scan
if geometry_file.file_location == 'circular.stl':
oneoff_object = Human.post_process(mould, f"mould mycomaterial {myco_material}")
oneoff_object = Human.post_process(oneoff_object, 'glycerine treatment')
shrinkage_results += Calipers.measure_size(oneoff_object, "important dimension")
scanning_results += Scanner.scan(oneoff_object)

several derivative measurement operations are ignored here for simplicity;
e.g., the extraction of 2D profiles from the scans

shrinkage_results = shrinkage_results.get_all_data()
scanning_results = scanning_results.get_all_data()

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Corrected Experiment. We had misunderstood that there are in fact several check loops at work in the myco-moulding process, and that
the timeline presented in the paper is intended to be inspirational rather than precise (we had coded it as a for loop). We adjusted to have
several while loops in a helper function for moulding. We also added additional sterilization instructions, in order to remain more true to

analyze(shrinkage_results)
analyze(scanning_results)

what was performed by the author.

class CustomModellingTool (DesignSoftware):

def

call the custom modelling tool that they created
@staticmethod
def sphere(radius: float=10.) -> GeometryFile:

return design('custom.stl', GeometryFile,
{'target_radius':radius},
f"use the custom tool to model a sphere with radius {radius}")

@staticmethod
def create_design(features: dict[str,object]) -> GeometryFile:

return design('custom.stl', GeometryFile,
features,
f"use the custom tool to model {features}")

@staticmethod
def modify_design(design: GeometryFile,

feature_name: str, feature_value: str|int) -> GeometryFile:
from control import MODE, Execute
file_location = design.file_location
if isinstance(MODE, Execute):
file_location = input(f"What is the location of the modified geometry file?")

design.updateVersion(feature_name, feature_value)
design.file_location = file_location
return design

prep_materials():

instruction("remove pathogens by pouring boiling water through materials in strainer")
instruction("bulk growth - 1 week")

instruction("break up for forming growth - 3 days")

instruction("keep in the fridge as prepared material")

instruction("remove from fridge to reactivate 1 day before beginning experiments")
instruction("ensure you wear gloves")

instruction("sterilize the prep space")

@fedt_experiment
def geometric_features():

def grow_mycomaterial_from_mould(mould, myco_material):

instruction("sterilize the prep area")
instruction("sterlize the mould with isopropyl alcohol™)
fabbed_object = Human.post_process(mould, f"mould mycomaterial {myco_material}")
is_reasonable = False
while not is_reasonable:
Environment.wait_up_to_time_single(fabbed_object, num_days=1)
instruction("look at or poke the sample")
fabbed_object = Human.is_reasonable(fabbed_object)
is_reasonable = fabbed_object.metadatal"human reasonableness check"]
instruction("remove the material from the mould for open growth")
is_reasonable = False

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

while not is_reasonable:
Environment.wait_up_to_time_single(fabbed_object, num_days=1)
instruction("look at or poke the sample")
fabbed_object = Human.is_reasonable(fabbed_object)
is_reasonable = fabbed_object.metadatal"human reasonableness check"]
instruction("allow the material to dry in a 50-80C oven")
is_reasonable = False
while not is_reasonable:
Environment.wait_up_to_time_single(fabbed_object, num_days=1)
instruction("look at or poke the sample")
fabbed_object = Human.is_reasonable(fabbed_object)
is_reasonable = fabbed_object.metadatal"human reasonableness check"]
instruction("material is ready when it is dry")
print(fabbed_object)
return fabbed_object

shrinkage_results = BatchMeasurements.empty()
scanning_results = BatchMeasurements.empty()

geometries = [VolumeFile(f) for f in ['ramps.stl', 'circular.stl', 'patterns.stl']]

prep_materials()
instruction("ensure you wear gloves")
instruction("sterilize the prep space")

for geometry_file in Parallel(geometries):
mould = Printer.slice_and_print(geometry_file)
for myco_material in Series(['30% coffee inclusions', 'no inclusions']):
fabbed_object = grow_mycomaterial_from_mould(mould, myco_material)
shrinkage_results += Calipers.measure_size(fabbed_object, "important dimension")
if geometry_file.stl_location != 'ramps.stl':
scan = Scanner.scan(fabbed_object)
scanning_results += scan
if geometry_file.stl_location == 'circular.stl':
oneoff_object = grow_mycomaterial_from_mould(mould, myco_material)
oneoff_object = Human.post_process(oneoff_object, 'glycerine treatment')
shrinkage_results += Calipers.measure_size(oneoff_object, "important dimension")
scanning_results += Scanner.scan(oneoff_object)

several derivative measurement operations are ignored here for simplicity;
e.g., extraction of 2D profiles from the scans

shrinkage_results = shrinkage_results.get_all_data()
scanning_results = scanning_results.get_all_data()

analyze(shrinkage_results)
analyze(scanning_results)

A.5.2 Experiment: Mechanical and Shrinkage Features. This experiment created a set of cubes and subjected them to tests to understand how
they shrunk during drying and how they behaved under compression and release.

Original Paper Description. After observing the reduction of dimensions during the drying process, our next goal was to further evaluate
if an object can be designed to achieve the desired output dimensions after drying. To test the effectiveness of dimension-corrected designs,
we created a series of rectangular cuboids, as shown in Figure 3 D. The target design was a cuboid 30 x 60 x 16mm. To achieve this, the 3D
printed model was scaled up by 1/0.92, based on the average amount of shrinkage (92.0%) measured in the tray designs. The growth stages
were the same as for the trays to produce samples with and without coffee ground inclusions (also at 10:3 ratio of substrate to inclusion by
weight), producing 8 cuboids with with inclusion, samples A-H, and 8 samples with without inclusion I-P, (see Figure 5 B). These samples
were also used for load testing.

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

The final 3D model dimensions shown in Table 2 differed slightly from the 3D printed dimensions. The grown blocks were surprisingly
consistent as shown in Figure 5 B. Samples A - H (Figure 5 B Top) included 30% coffee grounds by weight of the grow kit substrate used to
fill the mould. These had consistent shrinkage across the samples, with the greatest variation being in height, with the final blocks being an
average of 14.36mm tall, or 83.93% (o = 2.65) of the target size. The width and length of the blocks were much closer to the target, with the
average dimensions being 30.19 x 60.24mm (o = 0.17 and 0.18). Samples I - P (Figure 5 B bottom) did not include any coffee ground with the
substrate, and the change in size was also close to the target, at 29.84 x 59.05 x 15.57mm. Sample L was an outlier, at 57.63mm length, 89.1%
of the mould size, while all other samples were between 91.0% and 92.2% of the mould size.

Surface Quality

Samples A - H had formed a white layer of mycelia around the outside of the sample, which is often seen in myco-material examples (see
[15]), however Samples I - P had a darker appearance, and the shape of the underlying substrate is more easily visible. This is explained by
natural variations of the fungus to the specific conditions of the two growth runs. Under mushroom lab conditions where we would be
able to precisely control ambient humidity, temperature and COZ2, this may be able to be controlled, but in our HCI lab, some variation was
inevitable. It is also observable that samples I - P also had some evidence that they were starting to try to produce fruit, with small white
points visible in samples I - P in Figure 5 B (Bottom). These points feel dense or hard when dried, whereas the overall white coating seen on
samples A - D in Figure 5 B (Top) feels softer and similar to paper.

Mechanical Properties

We conducted a compression and relaxation study under an external load to test the elasticity of the material using the cuboids. The load
testing was performed using a Starr FDG-1000 digital force gauge, loaded on a manual testing stand and digital distance reading. Samples
were placed on a plastic block, and the myco-material blocks were pressed using a flat push attachment and the force from the material
measured at 0.5mm increments to a maximum depth of 5mm. The reading was taken using a custom Python script. Compression and
relaxation cycles were repeated 5 times on each cuboid.

Figure 6 A shows the results of the mechanical test. Subplots a) and b) show samples A - H (without inclusion), c) and d) show samplesI -
P (coffee ground inclusion). The two curves represent compression (loading, blue) and relaxation (unloading, orange), as a typical elastic
material, requiring less force to achieve the same displacement when relaxing. Comparing Figure 6 A subplots a vs ¢ and b vs d, we can
see that the coffee inclusion increased the slope or the modulus of elasticity. Comparing Figure 6 A subplots a vs b and ¢ vs d reveals that
treating with glycerine has a negligible effect on the elastic properties of the material without coffee inclusion. However, the glycerine
treated coffee mixture has better elasticity, since the compression and relaxation cycle almost overlap with low hysteresis loss in a complete
cycle. This result indicates that careful selection and tuning of inclusion material can be used to manipulate mechanical properties. This may
be relevant to a tangible application where the elastic modulus of the object needs to be adjusted, for example, in squeezable interfaces or
pressure sensors.

Replication in FEDT.

@fedt_experiment
def mechanical_and_shrinkage_features():
target_cube = StlEditor.cube((30,60,16))
scaled_mould = StlEditor.cube((30, 60, 16), scale=1/.92)

shrinkage_results = BatchMeasurements.empty()
mechanical_results = BatchMeasurements.empty()
mould = Printer.fab(scaled_mould)

fabbed_objects = []
prep_materials()

for myco_material in Series(['30% coffee inclusions', 'no inclusions']):
for repetition in Series(range(4)):

fabbed_object = Human.post_process(mould, f"mould mycomaterial {myco_material} ({repetition}th copy)")
Environment.wait_up_to_time_single(fabbed_object, num_weeks=1)
instruction("remove the material from the mould")
Environment.wait_up_to_time_single(fabbed_object, num_days=3)
instruction("allow the material to dry in a 50-80C oven")
Environment.wait_up_to_time_single(fabbed_object, num_weeks=7) # 1 day to 1 week
instruction("remove the object from the mould")
shrinkage_results += Calipers.measure_size(fabbed_object, "x-axis"
shrinkage_results += Calipers.measure_size(fabbed_object, "y-axis")
shrinkage_results += Calipers.measure_size(fabbed_object, "z-axis")

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

fabbed_objects.append(fabbed_object)

for fabbed_object in Parallel(fabbed_objects):
for repetition_mechanical in Series(range(5)):
for depth in Series(arange(©,5+include_last,.5)):
instruction("ensure fabbed object is appropriately arranged on testing stand")
fabbed_object = Human.post_process(fabbed_object,
f"compress the object to {str(depth)} ({repetition_mechanical}th time)")
not clear who/what does the compressing?
mechanical_results += ForceGauge.measure_force(fabbed_object)

analyze(shrinkage_results.get_all_data())
analyze(mechanical_results.get_all_data())

Corrected Experiment. We corrected our model to have, instead of 4 repetitions of moulding from a one-cube mould, a single repetition
of moulding on a 4-cube mould. we also confirmed that the researcher manually compressed the object, and added the release cycle
measurements, which we had initially missed. We also, as above, added the more complex helper function to do moulding.

@fedt_experiment
def mechanical_and_shrinkage_features():
def grow_mycomaterial_from_mould(mould, myco_material):
helper as above
return fabricate({'mould':mould, 'mycomaterial':myco_material},
f'prepare {myco_material} and mould as before')

target_cube = StlEditor.cube((30,60,16))
scaled_mould = StlEditor.cube((30, 60, 16), scale=1/.92)
scaled_mould_all = StlEditor.modify_design(scaled_mould, 'number of cubes in file', '4")

shrinkage_results = BatchMeasurements.empty()
mechanical_results = BatchMeasurements.empty()
mould = Printer.fab(scaled_mould_all)

fabbed_objects = []
prep_materials()

for myco_material in Series(['30% coffee inclusions', 'no inclusions']):
fabbed_object = grow_mycomaterial_from_mould(mould, myco_material)
shrinkage_results += Calipers.measure_size(fabbed_object, "x-axis")
shrinkage_results += Calipers.measure_size(fabbed_object, "y-axis")
shrinkage_results += Calipers.measure_size(fabbed_object, "z-axis")
fabbed_objects.append(fabbed_object)

for fabbed_object in Parallel(fabbed_objects):
for repetition_mechanical in Series(range(5)):
instruction("ensure fabbed object is appropriately arranged on testing stand")
for depth in Series(arange(@,5+include_last,.5)):
fabbed_object = Human.post_process(fabbed_object,
f"compress the object to {str(depth)} ({repetition_mechanical}th time)")
mechanical_results += ForceGauge.measure_force(fabbed_object)
for depth in Series(arange(5,0-include_last,-.5)):
fabbed_object = Human.post_process(fabbed_object,
f"release the object to {str(depth)} ({repetition_mechanical}th time)")
mechanical_results += ForceGauge.measure_force(fabbed_object)

analyze(shrinkage_results.get_all_data())
analyze(mechanical_results.get_all_data())

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

A.5.3 Experiment: Software Tool Testing. This experiment used a custom software tool to manufacture a series of objects and observe their
shrinkage in different directions.

Original Paper Description. To evaluate the functionality of the tool, we used it to generate a series of moulds for a sphere with radius
20mm and followed the myco-material fabrication process to grow three myco-material spheres. The sphere was chosen because it would
reduce in size uniformly in each direction and helps us evaluate performance from different angles. We measured each of the sphere across
the diameter at six different locations (See Figure 8 E). The 18 measurements (M = 39.92mm, o = 0.74) show that the final form was within
0.2% of the target size on average.

Replication in FEDT.

@fedt_experiment

def test_software_tool():
target_sphere = StlEditor.sphere(radius=20.)
software_generated_mould = CustomModellingTool.sphere(radius=20.)

prep_materials()

results = BatchMeasurements.empty()
mould = Printer.fab(software_generated_mould)
myco_material = "30% coffee inclusions"
for repetition in Parallel(arange(1,3+include_last)):
fabbed_object = Human.post_process(mould, f'"mould mycomaterial {myco_material}")
fabbed_object.metadata.update({ 'repetition’':repetition})
Environment.wait_up_to_time_single(fabbed_object, num_weeks=1)
instruction("remove the material from the mould")
Environment.wait_up_to_time_single(fabbed_object, num_days=3)
instruction("allow the material to dry in a 50-80C oven")
Environment.wait_up_to_time_single(fabbed_object, num_weeks=7) # 1 day to 1 week
measurement_points = arange(0,90+include_last,45)
for x_axis_point in Parallel(measurement_points):
results += Calipers.measure_size(fabbed_object, f"{x_axis_point} degrees along the x axis")
for y_axis_point in Parallel(measurement_points):
results += Calipers.measure_size(fabbed_object, f"{y_axis_point} degrees along the y axis")
for z_axis_point in Parallel(measurement_points):
results += Calipers.measure_size(fabbed_object, f"{z_axis_point} degrees along the z axis")

analyze(results.get_all_data())

Corrected Experiment. The only correction was, as above, adding the relatively more complex helper function describing growth.

@fedt_experiment
def test_software_tool():
def grow_mycomaterial_from_mould(mould, myco_material):
helper as above
return fabricate({'mould':mould, 'mycomaterial':myco_material},
f'prepare {myco_material} and mould as before')

target_sphere = StlEditor.sphere(radius=20)
software_generated_mould = CustomModellingTool.sphere(radius=20)

prep_materials()

results = BatchMeasurements.empty()

mould = Printer.fab(software_generated_mould)

myco_material = "30% coffee inclusions"

for repetition in Parallel(arange(1,3+include_last)):
fabbed_object = grow_mycomaterial_from_mould(mould, myco_material)
fabbed_object.metadata.update({ 'repetition': repetition})
measurement_points = arange(0,90+include_last,45)

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

for x_axis_point in Parallel(measurement_points):

results += Calipers.measure_size(fabbed_object, f"{x_axis_point} degrees along the x axis")
for y_axis_point in Parallel(measurement_points):

results += Calipers.measure_size(fabbed_object, f"{y_axis_point} degrees along the y axis")
for z_axis_point in Parallel(measurement_points):

results += Calipers.measure_size(fabbed_object, f"{z_axis_point} degrees along the z axis")

analyze(results.get_all_data())

A.6 Paper 6 : ElectriPop
Adapted from Fang, et al., 2022 [25].

A.6.1 Experiment: Simulation Optimization. This experiment looked at different simulation parameters to best match captured ground-truths
of fabricated and actuated objects.

Original Paper Description. Parameter Search and Optimization We initialized the mechanical parameters of our model using material
specifications of mylar [53]. To further refne these parameters, we ran a parameter search using our simulation tool. More specifically, we
physically inflated three designs — compound slits (Figure 8), nested flaps (Figure 11) and dragonfly (Figure 12) — and photographed their 3D
forms. In 3D CAD software (Blender), we replicated their 3D shape to serve as a ground truth. While using a 3D scanning tool (e.g., laser
scanning, photogrammetry) would have been faster, we did not find any that would robustly capture our thin and reflective mylar forms,
and so hand posing was necessary.

We then ran our simulation tool over a grid of possible parameters (see previous section). In pilot tests, we found that mylar had essentially
zero stretch (at least at the forces we consider), and so we dropped this from our search. This leaves two main parameters of interest: bending
energy and electrostatic energy. For each pair of values, the simulation was run on an input SVG, with output compared to the previously
prepared ground truth 3D model. We compare matched pairs of vertices to calculate the mean euclidean error. The results of our grid
search can be seen in Figure 5. The simulation found only a slight modification of values was needed achieve an optimal matching between
simulated and real-world results (darkest blue cell in the center of the grid; minimum error: 1.03%). We adopted these found parameters for
all subsequent studies.

Replication in FEDT.
electripop_laser_defaults = {
Laser .MATERIAL: 'mylar',
Laser.CUT_SPEED: 100,
Laser.CUT_POWER: 5

class ManualGeometryScanner:
geometry_scan = Measurement(
name="manual geometry scan",
description="A full copy of the object's geometry, stored in a file.",
procedure="""
Take a photograph of the object from 3 angles,
and extract the profiles from it into Blender.

nn
’

units="filename",
feature="full object")

@staticmethod

def scan(obj: RealWorldObject) -> BatchMeasurements:
instruction(f"Scan object #{obj.uid}.", header=True)
instruction(ManualGeometryScanner.geometry_scan.procedure)
return BatchMeasurements.single(obj, ManualGeometryScanner.geometry_scan)

class CustomSimulator:
def runsimulation(xargs, **kwargs):

pass

@fedt_experiment

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

def optimize_simulation():
test_files = [GeometryFile(fname) for fname in ['compound_slits.svg', 'nested_flaps.svg', 'dragonfly.svg']]

ground_truths = BatchMeasurements.empty()
simmed = BatchMeasurements.empty()

for f in Parallel(test_files):
fabbed_object = Laser.fab(f, default_settings=electripop_laser_defaults)
laser, vinyl cutter, scissors?
ground_truths += ManualGeometryScanner.scan(fabbed_object)
for weight_of_be_exp in Parallel(arange(-3,6+include_last)):
for weight_of_ee_exp in Parallel(arange(-1, 1+include_last, .2)):
sim = VirtualWorldObject('file.sim',
{'weight of bending energy': math.pow(10, weight_of_be_exp),
'weight of electrical energy': math.pow(10, weight_of_ee_exp),
'file': CustomSimulator.runsimulation(f,
weight_of_be_exp, weight_of_ee_exp)3})
simmed += ManualGeometryScanner.scan(sim)

analyze(ground_truths.get_all_data())
analyze(simmed.get_all_data())

Corrected Experiment. No corrections were required.
A.6.2 Experiment: Electrical Inflation. This experiment examined how long it takes to electrically saturate the mylar.

Original Paper Description. In order to compare against other shape changing methods, as well as more deeply understand the physics of
our technique, it was important to characterize ElectriPop’s behavior. For these experiments, we used our transformer base (Figure 6), which
has an output voltage of 9kV when powered at 12V.

Electrical inflation We measured the time and power required to flood the mylar film with charge (which is different from the time
needed to physically inflate, which we describe next). Using our snowman design (Figure 3), we measured the amount of current required
to electrically “inflate” our base and snowman design using a floating (non-grounded) multimeter with a known resistance of 9MQ. The
average steady-state current is V /R =11.5V/9IMQ=1.28muA, where V is the measured voltage, R is the resistance of the multimeter. Using
a high voltage probe with a resistance of 1GQ, we also measured the amount of current needed for the voltage converter, which is V /R
=6.80kV/1GQ=6.80pA, where V again is the measured voltage, R is the resistance of the high voltage probe. According to International
Electrotechnical Commission’s IEC 62368 standard, both current inputs are below the ES1 current limit [1]. In other words, the power source
is not capable of supplying dangerous steady-state current, and the system does not require a significant amount of current to be inflated. In
terms of duration, it takes on the order of 10 milliseconds to fully saturate the mylar with charge (it acts like a capacitor being charged with
a current-limited source).

Replication in FEDT.
@fedt_experiment
def electrical_inflation():
it takes "on the order of 1@0ms to fully saturate the mylar with charge"
but unclear if this was tested on more than one object or more than one repetition
pass

Corrected Experiment. The authors confirmed that they had done multiple repetitions with the snowman object and averaged the timings
with the oscilloscope.

@fedt_experiment
def electrical_inflation():
fabbed_object = Laser.fab(GeometryFile('snowman.svg'), default_settings=electripop_laser_defaults)

elapsed_times = BatchMeasurements.empty()
for repetition in Series(range(10)):
instruction("attach the oscilloscope probe")
instruction("monitor the oscilloscope to determine full saturation")
elapsed_times += Stopwatch.measure_time(fabbed_object, f"inflate to full for {repetition}th time")

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

analyze(elapsed_times.get_all_data())
A.6.3 Experiment: Physical Inflation. This experiment looked at how long it takes to physically inflate the mylar objects.

Original Paper Description. Physical Inflation As the mylar charges, it begins to repel and physically inflate. The repulsion force has to
overcome gravity and bend mylar, which wishes to stay fat. Air resistance also works to retard physical inflation. On average, our snowman
design takes around 100ms to fully inflate, and inflation times were remarkably consistent. In contrast, our largest and heaviest design, the
Christmas tree, takes 750ms to inflate.

Replication in FEDT.
@fedt_experiment
def physical_inflation():
fabbed_objects =
[Laser.fab(GeometryFile(fname), default_settings=electripop_laser_defaults)
for fname in ['snowman.svg', 'christmas_tree.svg']]

elapsed_times = BatchMeasurements.empty()

for obj in Parallel(fabbed_objects):
were there repetitions? were there other objects?
mention of "remarkably consistent", and implication that some others were tested
elapsed_times += Stopwatch.measure_time(obj, "inflate to full")

analyze(elapsed_times.get_all_data())

Corrected Experiment. The authors confirmed that there were repetitions on the inflations.
@fedt_experiment
def physical_inflation():
fabbed_objects = [Laser.fab(GeometryFile(fname), default_settings=electripop_laser_defaults)
for fname in ['snowman.svg', 'christmas_tree.svg']]

elapsed_times = BatchMeasurements.empty()
for obj in Parallel(fabbed_objects):
for repetition in Series(range(10)):
elapsed_times += Stopwatch.measure_time(obj, f"inflate to full for {repetition}th time")

analyze(elapsed_times.get_all_data())
A.6.4 Experiment: Electrical Deflation. This experiment measured how long it takes to deflate the mylar electrically when shunted.

Original Paper Description. Electrical Deflation We also measured how our mylar forms electrically deflate when grounded. For this, we
used a 1kQ shunt resistor to simulate the resistance of a finger. We used an oscilloscope probe attached to the resistor and recorded the
voltage across the resistor to measure the discharge current (Figure 23, blue line) when the resistor contacts the system (in this case, an
inflated snowman design), and we integrated the current to get the initial charge of the system (Figure 23, green line). The total discharge is
16.3nC. The time constant 7, which is the time it takes to reach 63% of steady-state is 39.5ns (Figure 23 red dash line). Since 7 = R x C, where
R and C are the resistance and capacitance of the system respectively, we can derive the capacitance of the system, which is 39.5pF. This is
an insignificant amount of charge and the system’s capacitance is extremely small compared to the IEC 62368 standard [1]. As discharge is
not current limited (unlike inflation), electrical discharge times are very fast — 160ns on average. This also allowed us to estimate the initial
voltage before discharge V =412V using V = Q/C, and the stored energy before discharge E =6.68y], using E = 0.5 x Q x V, where Q in both
equations is the total discharge. There is also natural electrical deflation over time due to e.g., water molecules in air slowly bleeding charge.
The rate of discharge depends on factors such as object surface area, ambient humidity and airflow. However, in general, the discharge rate
is low and was not a significant hindrance in our designs. For example, without periodic recharging, our flower deflates in 25 minutes (at
22.3 °C, 19% relative humidity). Thus, to keep forms fully inflated, we suggest momentary charge boosts every five minutes or so.

Replication in FEDT.

@fedt_experiment
def electrical_deflation():
snowman = Laser.fab(GeometryFile('snowman.svg'), default_settings=electripop_laser_defaults)

current_measures = ImmediateMeasurements.empty()

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

instruction('connect a 1kOhm resistor to the plate')

current = 9999999999

while current > 0:
current = current_measures.do_measure(snowman, Multimeter.current)
current = float(current) if current else 99999999
current_measures += Timestamper.get_ts(snowman)

analyze(current_measures.dump_to_csv())

Corrected Experiment. The authors confirmed the basic setup, but said that the speed of the loop didn’t matter and they didn’t take
continuous measurements; the curves shown in their figures were theoretically derived rather than empirically derived.

@fedt_experiment
def electrical_deflation():
snowman = Laser.fab(GeometryFile('snowman.svg'), default_settings=electripop_laser_defaults)

current_measures = ImmediateMeasurements.empty()
instruction('connect a 1kOhm resistor to the plate')
current = 9999999999
while current > 0:
current = current_measures.do_measure(snowman, Multimeter.current)
current = float(current) if current else 99999999
current_measures += Timestamper.get_ts(snowman)
the speed of the loop isn't so important, because the final result was theoretically derived

analyze(current_measures.dump_to_csv())
A.6.5 Experiment: Physical Deflation. This experiment looked at how long it takes for an object to physically deflate.

Original Paper Description. Physical Deflation Our snowman example takes 67ms to physically fall once static electricity is discharged and
the repulsion force becomes absent. Note that this is faster than inflation, as deflation is assisted by gravity and stored spring forces that
want to pull the mylar back to its original flat form. Working against deflation is air resistance, the magnitude of which is highly dependent
on object geometry (i.e., in some designs, the form can act like a parachute, slowing deflation).

Replication in FEDT.

@fedt_experiment

def physical_deflation():
discuss whether this is an experiment, or a measurement/characterization
snowman = Laser.fab(GeometryFile('snowman.svg'), default_settings=electripop_laser_defaults)
elapsed_times = BatchMeasurements.empty()
elapsed_times += Stopwatch.measure_time(snowman, "deflate fully")
analyze(elapsed_times.get_all_data())

Corrected Experiment. The authors confirmed that the method was correct, but described that they did not view this as an experiment:
rather as a demonstration and a way to provide intuition to readers.

@fedt_experiment

def physical_deflation_demo():
snowman = Laser.fab(GeometryFile('snowman.svg'), default_settings=electripop_laser_defaults)
elapsed_times = BatchMeasurements.empty()
elapsed_times += Stopwatch.measure_time(snowman, "deflate fully")
analyze(elapsed_times.get_all_data())

A.6.6 Experiment: Volumetric Change. This experiment measured how much size change is possible between the uninflated and inflated
states of a shape.

Original Paper Description. Volumetric change
Using our simulation tool, we characterized the volume of our snowman cutout (2.5 microns thin with a surface area of 19.20cm?) and its
total volume after inflation (104.49 cm®). Thus the total percentage increase in volume is roughly 200,000%.

Replication in FEDT.

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

@fedt_experiment
def volumetric_change():
configure_for_electripop()
instruction("set up the snowman linefile and programmatically inflate it")
snowman_virt = LineFile('snowman.svg')
snowman_phys = Laser.fab(snowman_virt, material="mylar")
volumes = BatchMeasurements.empty()
volumes += ManualGeometryScanner.scan(snowman_phys)
volumes += ManualGeometryScanner.scan(snowman_virt)
analyze(volumes.get_all_data())

Corrected Experiment. Similar to above, the authors described this as a demonstration rather than an experiment.

@fedt_experiment

def volumetric_change_demo():
instruction("set up the snowman linefile and programmatically inflate it")
snowman_virt = GeometryFile('snowman.svg')
snowman_phys = Laser.fab(snowman_virt, default_settings=electripop_laser_defaults)
volumes = BatchMeasurements.empty()
volumes += ManualGeometryScanner.scan(snowman_phys)
volumes += ManualGeometryScanner.scan(snowman_virt)
analyze(volumes.get_all_data())

A.6.7 Experiment: Fabrication Time. This experiment measured how long it takes to fabricate objects for ElectriPop on a laser cutter.

Original Paper Description. Fabrication Time As noted earlier, our designs can be cut by many different technologies that range from slow
and laborious (e.g., scissors — one output after several minutes) to fast and precise (e.g., die cutting — many outputs per second). Laser
cutting lies somewhere in the middle in terms of speed, and it is also a tool available in many fabrication spaces. In the case of our snowman
example, the cut time is 30 seconds on our ULS 30W CO2 laser cutter (100% speed, 5% power).

Replication in FEDT.

@fedt_experiment

def fabrication_time():
discuss whether this is an experiment, or a measurement/characterization
snowman = GeometryFile('snowman.svg')
elapsed_times = BatchMeasurements.empty()
elapsed_times += Stopwatch.measure_time(snowman, "fabricate on the laser")
analyze(elapsed_times.get_all_data())

Corrected Experiment. As above, authors described this as a demonstration rather than an experiment. They also noted that they did not
time the cuts; they used the laser’s time estimation.

@fedt_experiment
def fabrication_time_demo():
snowman = GeometryFile('snowman.svg')
elapsed_times = BatchMeasurements.empty()
elapsed_times += Stopwatch.measure_time(snowman, "fabricate on the laser")
analyze(elapsed_times.get_all_data())

A.6.8 Experiment: Geometric Accuracy. This experiment explored the accuracy of the full simulation to fabricated objects.

Original Paper Description. To measure the geometric accuracy of our simulation, we compared the 3D model of our simulated result
with its real-world output. As noted in section 5.0.1, it was not possible to use a 3D scanning tool (e.g., laser scanning, photogrammetry) to
automatically create a 3D model of our physical output, due to the thin and reflective nature of mylar. Instead, we manually created a 3D
model that matched the physical output, creating a ground truth. We did this for our rose, snowman, and Christmas tree designs (Figure 1B,
3, 22 respectively). Now, with both a 3D model of the physical output and a 3D model of the simulated output, we can iterate through all
vertices to compute the distance error between the two models. To remove rotation as a factor, the base vertices in both models are aligned.
We ran our simulations 100 times on a computer with an X3900 RYZEN CPU. Table 1 also reports the average simulation convergence time
for each design. Simulation for most designs takes around ten seconds to fully converge, and the user is able to watch the simulation play
out in real time.

Across all simulation trials, we found a mean 3D euclidean error of 1.55mm. Broken out by design, our rose, Christmas tree and snowman
simulation results had errors of 3.43mm (SD=0.34), 0.75mm (SD=1.30), and 0.46mm (SD=0.15) respectively (Table 1). Qualitatively, we found

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

that the models largely matched in gestalt. While there were small variations, often accessory details, these were more often than not
"correct” answers, and the output depended on how the form was inflated or perturbed from airflow. Put simply: the simulated result was not
incorrect, but rather a different correct state. This can be seen in Figure 24, which visualizes the error distribution for our worst performing
output: the flower. Note that most of the form is in dark blue (accurate), with a few errorful regions (shades of red) that are still plausibly
posed. Overall, our empirical results match our observations that our simulation tool could be relied upon to provide a preview of the 3D
form.

Replication in FEDT.

@fedt_experiment
def geometric_accuracy():

test_files = [GeometryFile(fname) for fname in ['rose.svg', 'snowman.svg', 'christmas_tree.svg']]

ground_truths = BatchMeasurements.empty()
simmed = BatchMeasurements.empty()

for f in Parallel(test_files):

fabbed_object = Laser.fab(f, default_settings=electripop_laser_defaults)

laser? vinyl cutter? scissors?

ground_truths += ManualGeometryScanner.scan(fabbed_object)

for sim_repetition in Parallel(range(100)):
sim = VirtualWorldObject({'file': CustomSimulator.runsimulation(f)3})
simmed += ManualGeometryScanner.scan(sim)
simmed += Stopwatch.measure_time(sim, "converge simulation")

analyze(ground_truths.get_all_data())
analyze(simmed.get_all_data())

Corrected Experiment. The authors confirmed that they had used a laser cutter to create the objects. They also remarked that they had
re-used the same fabricated objects for several experiments, but that these were replaced as they broke. We have added a function that takes
care of this.

SNOWMAN = None
ROSE = None
TREE = None
def get_objects():
global SNOWMAN, ROSE, TREE

if SNOWMAN == None or Human.do_and_respond("check if snowman is broken", "is it broken?") == 'yes':
SNOWMAN = Laser.fab(GeometryFile("snowman.svg"))

if ROSE == None or Human.do_and_respond("check if rose is broken", "is it broken?") == 'yes':
ROSE = Laser.fab(GeometryFile("rose.svg"))

if TREE == None or Human.do_and_respond("check if tree is broken", "is it broken?") == 'yes':

TREE = Laser.fab(GeometryFile("christmastree.svg"))
return [SNOWMAN, ROSE, TREE]

@fedt_experiment
def geometric_accuracy():

test_objects = get_objects()

ground_truths = BatchMeasurements.empty()
simmed = BatchMeasurements.empty()

for fabbed_object in Parallel(test_objects):
instruction("inflate the object")
ground_truths += ManualGeometryScanner.scan(fabbed_object)

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

for sim_repetition in Parallel(range(100)):
sim = VirtualWorldObject('file.sim', {'file': CustomSimulator.runsimulation(
fabbed_object.metadatal'line_file']), 'repetition': sim_repetition})
simmed += ManualGeometryScanner.scan(sim)
simmed += Stopwatch.measure_time(sim, "converge simulation")

analyze(ground_truths.get_all_data())
analyze(simmed.get_all_data())

A.7 Paper 7 : FabHydro
Adapted from Yan, et al., 2021 [87].

A.7.1 Experiment: Resins. This experiment compares behaviours of a single object fabricated with different types of resins.

Original Paper Description. Printing Material We experimented with three different types of resin: the standard photosensitive resin [9],
the Siraya Tech Tenacious resin [45] (one of the most accessible flexible resins on the market), and the F39/F69 resin from RESIONE [35]. The
goal is to find the resin that can be used to print deformable structures, i.e., structures that are both compressible and stretchable.

To understand the flexibility of the selected materials, we printed a set of hollow bellows with 1 mm wall thickness with all three materials
(Figure 3a). The one printed with the standard resin cracked under loads before any noticeable deformation (Figure 3c), suggesting that it
will not fulfill our goal despite being widely available. The Tenacious resin is performing better in compression than the standard resin, as
the model could be compressed with obvious deformation. However, the rebound speed is slow due to the stiffness, and the elongation
of the model is limited by the elongation at the break ratio of the material (Figure 3b). Thus, this impact-resistant resin is not ideal as
hydraulic systems require faster rebound and better stretchability. With the same testing model, the sample printed with F39/F69 resin can
be compressed to half the length and extended to 1.5 times the length without breaking (Figure 3d and e), making it an ideal candidate for
printing hydraulic devices. See Table 1 for the summary of the material properties and behaviors.

Replication in FEDT.

@fedt_experiment
def resin_types():
stl = GeometryFile('bellows_Tmm.stl")

compression_results = BatchMeasurements.empty()

tension_results = BatchMeasurements.empty()

for resin in Parallel(['standard', 'tenacious', 'f39/f69']):
fabbed_object = Printer.fab(stl, material=resin)
instruction(f"compress object #{fabbed_object.uid} as much as possible (?)") # with what? how much?
compression_results += Calipers.measure_size(fabbed_object,"height after compression")
instruction(f"extend object #{fabbed_object.uid} as much as possible (?)") # with what? how much?
tension_results += Calipers.measure_size(fabbed_object,"height after stretching")

analyze(compression_results.get_all_data())
analyze(tension_results.get_all_data())

Corrected Experiment. This experiment was somewhat less formal than we had thought, and mainly involved human intuition for deciding
if something was reasonable. The authors also noted that they found the bellows file in prior work, and that they had to recompile it to be
the correct size for their project.

@fedt_experiment
def resin_types():
stl = GeometryFile('bellows_Tmm_priorwork_recompiled.stl")

compression_results = BatchMeasurements.empty()

tension_results = BatchMeasurements.empty()

for resin in Parallel(['standard', 'tenacious','f39/f69']):
fabbed_object = Printer.fab(stl, material=resin)
instruction(f"compress object #{fabbed_object.uid} as much as possible")
compression_results += Human.judge_something(fabbed_object, "height after squishing is good")
compression_results += Human.judge_something(fabbed_object, "speed of squshing is good")
instruction(f"extend object #{fabbed_object.uid} as much as possible")

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

compression_results += Human.judge_something(fabbed_object, "height after stretching is good")
compression_results += Human.judge_something(fabbed_object, "speed of stretching is good")

analyze(compression_results.get_all_data())
analyze(tension_results.get_all_data())

A.7.2 Experiment: Bend vs. Thickness. This experiment explored flexibility of structures with different thicknesses in the chosen resin.

Original Paper Description. Besides flexible structures, a working hydraulic system also needs certain spots to remain strong and rigid to
serve as structural supports. As the Poisson effect suggests, the thicker the material gets, the stronger it is to resist deformation. We thus
further explored how the deformation is affected by the structure thickness of models printed with the F39/F69 resin.

Figure 4a shows nine testing samples with a rectangular cross-section (20 mm x 30 mm) and a thickness ranges from 1 mm to 5.5 mm,
with a 0.5 mm increment. We fixed one end of the samples and engaged a load of 0.49 N at the other end. Figure 4b shows the bending angle
versus the thickness in the given dimension of the printed samples. We conclude that a printed wall with a thickness of 3 mm can serve the
purpose of a stiff structure, while a wall with less than 2 mm can create a hinge with great flexibility. All models in the rest of the paper are
printed with the F39/F69 flexible resin unless otherwise noted.

Replication in FEDT.

@fedt_experiment
def bend_vs_thickness():

bend_results = BatchMeasurements.empty()

for thickness in Parallel(arange(1,5.5+include_last,.5)):
stl = StlEditor.cube((20,30,thickness))
fabbed_object = Printer.fab(stl)
instruction(f"fix object #{fabbed_object.uid} at one end and hang a load of ©.49N at the other end")
bend_results += Protractor.measure_angle(fabbed_object,"angle of tip below 90 degrees")

what is the source of the error bars?

analyze(bend_results.get_all_data())

Corrected Experiment. The authors described that they did repeat the experiment several times per object, but that it was not predetermined
how many times that would be. They also informed us that they did not measure with a protractor on the object, but from a photograph.

@fedt_experiment
def bend_vs_thickness():

bend_results = BatchMeasurements.empty()

for thickness in Parallel(arange(1,5.5+include_last,.5)):
stl = StlEditor.cube((20,30,thickness))
fabbed_object = Printer.fab(stl)
for repetition in Series(arange(1,3+include_last)): # somewhat unofficial how many repetitions
instruction(f"fix object #{fabbed_object.uid} at one end and hang a load of ©.49N at the other end")
instruction("take a photo of the object and use a protractor on the image")
bend_results += Protractor.measure_angle(fabbed_object,"angle of tip below 90 degrees")

analyze(bend_results.get_all_data())
A.7.3 Experiment: Thin Wall Thickness. This experiment looked at the pressure that can be held by walls of different thickness.

Original Paper Description. Minimum Thin Wall Thickness We report that the thin wall can be reliably printed with a minimum thickness
of 0.7 mm. To understand the maximum pressure it can take, we further experimented with two sets of small chambers, one side printed with
the 0.7 mm wall thickness and the rest with 5 mm (Figure 16a). Note that the two sets of chambers were also printed with two orientations:
one with the printed layers visible across the surface (set 1) and the other with the layers parallel to the surface with no visible seam (set 2).
For testing, we ran three samples for each set by pumping water into these chambers until they rapture. The pressure was measured through
a regulator. We confirm that the inner walls, even with a 0.7 mm thickness, can undertake the pressure up to 32 psi when printed in the
orientation of set 1 and 33 psi for the set 2 samples.

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

Replication in FEDT.

@fedt_experiment
def min_wall_thickness():

pressure_results = BatchMeasurements.empty()

base_stl = GeometryFile("wall_thickness_test.stl")
for orientation in Parallel([0,90]):
stl = StlEditor.rotate(base_stl, orientation)
for repetition in Parallel(range(3)):
fabbed_object = Printer.fab(stl, repeitition=repetition)
instruction(f"inflate object #{fabbed_object.uid} until it ruptures")
pressure_results += PressureSensor.measure_pressure(fabbed_object,"pressure at rupture")

analyze(pressure_results.get_all_data())
Corrected Experiment. No changes were required.

A.7.4 Experiment: Minimum Wall Spacing. This experiment looked at how far apart walls could be printed without joining together.

Replication in FEDT.

@fedt_experiment

def min_wall_spacing():
not clear what the experiment was? they say "Based on our printing test,
analyze("1.4mm")

Corrected Experiment. The authors clarified that they had done a stepped method of testing to find where walls would cease to separate.

@fedt_experiment
def min_wall_spacing():
acceptability_results = ImmediateMeasurements.empty()
base_stl = GeometryFile("thin_wall.stl")
neighbours_separated = True
separation = 2.5
while neighbours_separated:
printing_stl = StlEditor.modify_design(base_stl, "spacing between copies", separation)
fabbed_object = Printer.fab(printing_stl)
neighbours_separated = acceptability_results.do_measure(fabbed_object,
TrueFalser.truefalse.set_feature(
"did the neighbouring cubes separate?"))
if neighbours_separated:
separation -= .1

analyze(acceptability_results)

A.7.5 Experiment: Thin Wall Area. This experiment looked at deformation of thin spots under pressure, and how this relates to their surface
area.

Original Paper Description. Minimum Thin Wall Area Another factor that affects the deformation is the expansion distance generated
from the thin wall area. A longer expansion distance will push the adjacent units further away from each other, resulting in a more
aggressive overall deformation. In this experiment, we altered the thin wall area to observe the changes of the expansion distance (Figure
16b). Specifically, we printed a series of chambers with one wall with 0.7 mm thick and the rest with 5 mm, the same as in the previous
experiment. The cross-section area is a square shape, thus the size of the area is controlled by the edge length, which ranges from 6 mm to 15
mm, with 1 mm increments (Figure 16¢). Pressurized water was pumped into the chambers with 20 psi (Figure 16b). The vertical expansion
height is shown in the graph (Figure 16d). According to the result, we conclude that the maximum expansion height is approximately linear
against the edge length of the inner wall. When considering together with the wall spacing (see above), we can conclude that the thin wall
should have edges not smaller than 6 mm.

The above design parameters are summarized in Table 2.

Replication in FEDT.

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

@fedt_experiment
def min_thin_wall_area():
expansion_results = BatchMeasurements.empty()

for edge_length in Parallel(arange(6,15+include_last)):

stl_loc = Human.do_and_respond(
f"create an STL with edge length {edge_length}, thin wall @.7mm, other walls 5mm",
"where is the STL?")

stl = GeometryFile(stl_loc)

fabbed_object = Printer.fab(stl)

instruction("pump 20psi into the fabricated object")

expansion_results += Calipers.measure_size(fabbed_object,"vertical expansion height")

analyze(expansion_results.get_all_data())
Corrected Experiment. No corrections were required.

A.7.6 Experiment: Hydraulic versus Pneumatic. This experiment looked at the relative behaviour of objects made with internal air versus
internal resin fluid.

Original Paper Description. In this work, we adopted hydraulic transmission over pneumatic for two reasons. First, a hydraulic mechanism
is more energy effcient. We compared both methods’ transmission efficiency by printing two sets of single-actuator-single-generator
systems with an identical design. We filled one system with water and sealed the other with air. Upon full compression of the generator, the
hydraulic-driven system’s actuation has a more significant displacement (figure 24). This is caused by the non-linearity of the volume-pressure
relationship in the pneumatic systems. Similar effects can be seen in balloons where the air volume increases, but the pressure tends to
remain stable.

Replication in FEDT.

@fedt_experiment

def pneumatic_vs_hydraulic():
demonstration or experiment?
expansion_results = BatchMeasurements.empty()

stl = GeometryFile("single_actuator_single_generator.stl")

for fill in Parallel(['water','air']):
fabbed_object = Printer.fab(stl)
filled_object = Human.post_process(fabbed_object,f"fill object with {fill}")
expansion_results += Calipers.measure_size(filled_object,"displacement of tip")

analyze(expansion_results.get_all_data())

Corrected Experiment. The authors confirmed that this was a demonstration rather than a formal experiment, and that they were
uninterested in reporting specific numbers, but rather that they wanted to give intuition about behaviours.

A.7.7 Experiment: Lasting. This experiment printed a large collection of cubes and allowed them to sit in natural sunlight, cutting a few
open each day to see how much the sunlight had cured the resin inside.

Original Paper Description. The UV-sensitive resin will cure when exposed to UV light. One of the main concerns we have for a printed
hydraulic device, especially with the Submerged Printing approach, is that the liquid resin may get cured after the object is printed.

To understand how long the printed object will still be functional under normal indoor usage, we ran an exposure experiment for a series
of printed cubes that all have locked-in resin. Specifically, we printed 48 testing cubes with the side length of 11 mm and wall thickness of 1
mm using the Submerged Printing process. All samples were placed in an indoor environment with a light intensity of 400 to 600 lux. Every
24 hours, we cut open three cubes to measure how much of the resin was still in the liquid phase by weighting the cube before and after the
cut, as shown in Figure 25a. Figure 25b shows the result of the 16-day experiment. Over time, we observe that the liquid resin does get cured
gradually, but mainly close to the wall. The amount of cured resin reaches stability at day eight, with still more than 75% of resin remains in
the liquid phase. Thus, our printing method is proper for rapid prototyping. Increasing the wall thickness can further reduce the fluid loss,
but at the cost of losing flexibility.

Replication in FEDT.

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

@fedt_experiment
def lasting():
stl = GeometryFile("side_T11mm_wall_1mm.stl")
fabbed_objects = []
for repetition in Parallel(range(48)):
fabbed_objects.append(Printer.fab(stl, repetition=repetition))

pre_weights = BatchMeasurements.empty()
post_weights = BatchMeasurements.empty()

cubes_per_day = 3
for day in Series(range(16)):
Environment.wait_up_to_time_multiple(fabbed_objects, num_days=day)
cubes = fabbed_objects[day*cubes_per_day: (day+1)*cubes_per_day]
for cube in Parallel(cubes):
pre_weights += Scale.measure_weight(cube)
leaked_cube = Human.post_process(cube, f"cut open the cube and let the fluid leak out")
post_weights += Scale.measure_weight(leaked_cube)

analyze([pre_weights.get_all_data(),post_weights.get_all_data()])

Corrected Experiment. The authors confirmed that the procedure we had written was correct according to their paper, but that in reality
they had printed cubes “as possible” given other use of their printer. Each cube’s age was individually tracked, and it was cut open at the
appropriate time. This type of experiment pragmatics is challenging to encode in FEDT, and is discussed in Future Work.

A.8 Paper 8:G-ID
Adapted from Dogan, et al., 2020 [20].

A.8.1 Experiment: Parameter Spacings. This experiment explores different parameter spacings to determine which are distinguishable for
the algorithm.

Original Paper Description. We conducted an experiment to determine which parameter spacing can be reliably identified using our
detection method. For the experiment, we printed a number of instances with different slicing settings and used our detection method to
identify each pattern. Table 1 summarizes the results of this experiment under regular office light conditions. We focus this analysis on
the parameters related to bottom surface and infill, which are seen from the object’s base, and do not consider those related to the side
(intermediate layers).

To select these objects, we downloaded the top 50 3D models from Thingiverse [48] and ranked them by their bottom surface area (i.e.,
the largest square one may inscribe in the contour of the first slice, determined by an automated MATLAB script). We found that 25 models
had a large surface area (>6¢m?), 7 models had a medium surface area (1.2-6cm?), and 18 models had small surface areas (<1.2cm?). These
ranges were determined empirically based on our initial tests. We randomly picked one object representing each of these three categories
and printed multiple instances using the parameters below.

Determining the Range for Each Slicer Setting Before slicing each of the models with different settings, we first determined the min and max
values for each setting. Bottom: For the bottom angle, we can use 0°-180°. Going beyond 180°would cause instances to be non-distinguishable
(i.e., 90°looks the same as 270°). We took the min value for initial bottom line width as 0.35mm, the default value recommended in the slicer
Cura. Although this parameter can be as large as twice the nozzle size (2*0.4mm), we limit the max value to 0.6mm to avoid disconnected
lines. For the pattern settings, which do not have min and max values, we considered the “line” pattern for the bottom surface.

Infill: As for the infill angle, we can use a range of 0°-60° for the trihexagon and triangular patterns, and 0°-90°for the grid pattern, as their
layouts are periodic with period 60°and 90°, respectively. For infill line distance (density), we determined that having infill units smaller than
2.6mm makes the pattern unrecognizable — we thus used it as the min value. The max value is 3.2mm for objects with medium base area but
may go up to 8.0mm for larger objects. Going beyond this value would imply an infill density of less than 10%, and thus fragile, less stable
objects. The three infill pattern (type) settings do not have min or max values.

Slicing with Different Spacings and Capturing Photos Next, we used our three selected objects (small, medium, large), and printed them
with different slicing settings. Our goal was to determine how finely we can subdivide the given parameter ranges for accurate detection. To
find the optimal spacing for each parameter, we made pairwise comparisons of two values (e.g., for angles, instance #1: 8°- instance #2: 5°;
difference: 3°), while keeping all other parameters constant. Based on 16 pictures taken for each pairwise comparison, we report the accuracy
at which we can distinguish the two instances. For the prints with infill variations, we held a small light source (Nitecore Tini [34]) against
the side of the 3D printed object before taking the image.

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

Results of the Experiments As expected, objects from the “small” category did not have sufficient base area to fit in enough infill units and
thus not give satisfactory results. We therefore conclude that G-ID cannot be used for very small bases and excluded them from the rest of
the analysis. We next discuss the results for each slicing parameter for the medium and large object category. Bottom Line Angle & Width
The dashed lines in Figure 11a,b indicate that a spacing of 5°and 0.05 mm provides a classification accuracy of 100for both the medium and
large base area categories, respectively. Thus, a range of 0°-180°would give us 36 variations for the angle. However, we exclude the two
degrees 0°and 90°from the bottom line angle range since these are reserved for error checking (as described in section “Detecting Slicing
Parameters”), therefore we have 34 variations. A range of 0.35-0.6mm allows 36 variations for the width.

Infill Angle & Line Distance (Width) The dashed lines in Figure 11c,d show that a spacing of 5°and 0.6mm provides a 100% detection
accuracy for the two categories, respectively. Thus, for the ranges of 0°-60° and 0°-90°, we can use 12 or 18 variations, respectively. For the
width, we can use, for medium objects, a range of 2.6- 3.2mm (2 variations); and for large objects 2.6-8.0mm (10 variations). We report the
smaller number in Table 1.

Infill Pattern The confusion matrix in Figure 12 shows that the “grid” and “trihexagon” work for both medium and large classes. For large
objects, we can also use all three different patterns.

Replication in FEDT.

class Blender:
def render_gcode(gcode: VirtualWorldObject):
instruction("render the object in blender")
return gcode

@fedt_experiment

def find_bottom_spacings():
large_object = GeometryFile("large from thingiverse.stl")
medium_object = GeometryFile("medium from thingiverse.stl")
small_object = GeometryFile("small from thingiverse.stl")

bottom_angle_results = BatchMeasurements.empty()
bottom_width_results = BatchMeasurements.empty()
infill_angle_results = BatchMeasurements.empty()
infill_density_results = BatchMeasurements.empty()
infill_pattern_results = BatchMeasurements.empty()

these guesses are made based on the labels in the figure at the top of page 8,
which has no caption or name, and table 1
for obj_file in Parallel([large_object,medium_object,small_object]):

for bottom_angle in Parallel(arange(9,180+include_last,1)): # or was it arange(0,6+include_last,1) ?
fabbed_object = Printer.fab(obj_file, bottom_angle=bottom_angle)
bottom_angle_results += Camera.take_picture(fabbed_object, "bottom")

for bottom_width in Parallel(arange(©.35,0.6+include_last,.01)):
or was it arange(@.35,0.35+0.06+include_last,.01) ?
fabbed_object = Printer.fab(obj_file, bottom_width=bottom_width)
bottom_width_results += Camera.take_picture(fabbed_object, "bottom")

for infill_pattern in Parallel(['trihexagon', 'triangular', 'grid']):
infill_angles = None
if infill_pattern in ['trihexagon', 'triangular']:
infill_angles = arange(0,60+include_last,1) # or was it arange(@,6+include_last,1) ?
else: # if it's grid
infill_angles = arange(0,90+include_last,1) # or was it arange(@,6+include_last,1) ?
for infill_angle in Parallel(infill_angles):
fabbed_object = Printer.fab(obj_file,
infill_pattern=infill_pattern,
infill_rotation=infill_angle)
fabbed_object = Human.post_process(fabbed_object, "hold a light above the object")
picture = Camera.take_picture(fabbed_object, "bottom")

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

infill_angle_results += picture
if infill_angle ==
infill_pattern_results += picture

for infill_density in Parallel(arange(2.6, 3.2+include_last, 0.1)):
or was it arange(2.6, 2.6+0.7+include_last, 0.1) ?
fabbed_object = Printer.fab(obj_file,
infill_density=infill_density)
infill_density_results += Camera.take_picture(fabbed_object, "bottom")

analyze(bottom_angle_results.get_all_data())

analyze(bottom_width_results.get_all_data())

analyze(infill_pattern_results.get_all_data())

analyze(infill_angle_results.get_all_data())

analyze(infill_density_results.get_all_data())

then they do comparative work by examining the relative differences of object features...

were other fabrication variables (e.g., filament colour) controlled? ->
maybe it was white? this is suggested in a later section

Corrected Experiment. The authors corrected a few things about our implementation: filament color was fixed to be white. They only
printed parts of the object in some cases (i.e., the bottom several layers), which is not currently supported in our libraries. They did not as
aggressively search the parameter space, but did a more conservative search than we originally guessed. In addition, they noted that we had
neglected to include 16 photos of each object.

class Blender:
def render_gcode(gcode: VirtualWorldObject):
instruction("render the object in blender")
return gcode

class ExternalApp:
def analyze(photo):
pass

@fedt_experiment

def find_bottom_spacings():
large_object = GeometryFile("large from thingiverse.stl")
medium_object = GeometryFile("medium from thingiverse.stl")
small_object = GeometryFile("small from thingiverse.stl")

bottom_angle_results = BatchMeasurements.empty()
bottom_width_results = BatchMeasurements.empty()
infill_angle_results = BatchMeasurements.empty()
infill_density_results = BatchMeasurements.empty()
infill_pattern_results = BatchMeasurements.empty()

for obj_file in Parallel([large_object,medium_object,small_object]):
for bottom_angle in Parallel(arange(0,6+include_last,1)):
fabbed_object = Printer.fab(obj_file, bottom_angle=bottom_angle, filament_color="'white')
need to add partial print option
for photo_rep in Parallel(range(16)):
bottom_angle_results += Camera.take_picture(fabbed_object, "bottom")

for bottom_width in Parallel(arange(©.35,0.35+0.06+include_last,.01)):
fabbed_object = Printer.fab(obj_file, bottom_width=bottom_width, filament_color="white')
for photo_rep in Parallel(range(16)):
bottom_width_results += Camera.take_picture(fabbed_object, "bottom")

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

for infill_pattern in Parallel(['trihexagon', 'triangular','grid']):
for infill_angle in Parallel(arange(9,6+include_last,1)):
fabbed_object = Printer.fab(obj_file,
infill_pattern=infill_pattern,
infill_rotation=infill_angle,
filament_color="white")
fabbed_object = Human.post_process(fabbed_object, "hold a light above the object")
for photo_rep in Parallel(range(16)):
picture = Camera.take_picture(fabbed_object, "bottom")
infill_angle_results += picture
if infill_angle ==
infill_pattern_results += picture

for infill_density in Parallel(arange(2.6, 2.6+0.7+include_last, 0.1)):
fabbed_object = Printer.fab(obj_file,
infill_density=infill_density,
filament_color="white')
for photo_rep in Parallel(range(16)):
infill_density_results += Camera.take_picture(fabbed_object, "bottom")

analyze(bottom_angle_results.get_all_data())
analyze(bottom_width_results.get_all_data())
analyze(infill_pattern_results.get_all_data())
analyze(infill_angle_results.get_all_data())
analyze(infill_density_results.get_all_data())

A.8.2 Experiment: Cross-Validation. This experiment creates a few objects with random parameters and attempts to distinguish them.

Original Paper Description. To cross-validate our parameter spacing, we printed another random set of 16 objects (10 large, 6 medium)
from the same top 50 model list from Thingiverse (excluding the ones we used in the previous experiment) with white filament. Before
printing, we randomly assigned each model a combination of slicing settings from the available parameter space and then tested if G-ID can
identify them. Our second goal was to see if the parameter spacing still applies when multiple parameters are varied at the same time (our
previous experiment only varied one slicing parameter per instance at a time). Among the 10 objects with large bottom area, all slicing
parameters were correctly identified. Among the 6 objects from the medium category, 5 were correctly identified. In total, the detection
accuracy is 93.75%. The falsely identified model had the smallest bottom surface area (1.4cm?), which confirms the fact that objects without
sufficient surface area cannot be recognized.

Replication in FEDT.

def random_param_set():
infill_pattern = random.choice(['trihexagon', 'triangular', 'grid'])
infill_rotation_range = None
if infill_pattern in ['trihexagon', 'triangular']:
infill_rotation_range = arange(0,60,1)
else: # if it's grid
infill_rotation_range = arange(0,90,1)
return (random.choice(arange(0,180,5)), # bottom angle
random.choice(arange(@.35,0.6+include_last, .05)), # bottom width
infill_pattern, # infill pattern
random.choice(infill_rotation_range), # infill rotation
random.choice(arange(2.6, 3.2+include_last, 0.6))) # infill density / width

@fedt_experiment

def cross_validation():
large = [GeometryFile("large obj from thingiverse.stl")] * 10
medium = [GeometryFile("medium obj from thingiverse.stl")] * 6
objs = large + medium

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

filament = 'white'
all_object_results = BatchMeasurements.empty()

for obj in Parallel(objs):

bottom_angle, bottom_width, infill_pattern, infill_rotation, infill_density = random_param_set()
fabbed_object = Printer.fab(obj,

infill_pattern=infill_pattern,

infill_rotation=infill_rotation,

bottom_angle=bottom_angle,

bottom_width=bottom_width,

infill_density=infill_density,

filament_color=filament)
fabbed_object = Human.post_process(fabbed_object,

"hold a light above the object") # I'm assuming this happened

all_object_results += Camera.take_picture(fabbed_object, "bottom")

analyze(all_object_results.get_all_data())
Corrected Experiment. No corrections were required.

A.8.3 Experiment: Lighting. This experiment subjected six random objects to different lighting conditions to determine how easily they
could be distinguished.

Original Paper Description. Surface: To see how the filament’s color and different lighting affect the detection of surface parameters, we
printed six instances of the key cover with eight different colors of Ultimaker PLA filaments (total of 48 instances) and using a dimmable
LED lamp varied the light in the room from 0 - 500 lux (measured with lux meter Tacklife LM01). We picked the filament colors to be the
primary and secondary colors of the RYB model, as well as white and black filament. We selected the light intensities to represent different
low-light conditions. For slicing, we used surface parameters distributed evenly along bottom line angle and width within the allowed range
from Table 1. The results are shown in Figure 14. All colors worked well for lighting conditions above 250 lux. This shows that our approach
works well in classrooms (recommended light level: 250 lux) [32] and offices/laboratories (recommended light level: 500 lux). The results also
show that the camera needs more light to resolve the lines for lighter colors (i.e., white and yellow) than for darker colors. Since we used
white filament for our parameter spacing evaluation, the results in Table 1 work even for worst-case scenarios. This also means that for
other filament colors, an even smaller surface area would suffice for correct detection since the surface details can be better resolved.

Infill: We were able to detect the patterns for all of the aforementioned filament colors except for black due to its opaque nature. Further,
the brighter the light, the thicker the object base may be: 145 lumens suffice for a base of 1mm (suggested thickness in Cura), 380 lumens
suffice for 1.75 mm.

Replication in FEDT.

@fedt_experiment
def materials_lighting_thicknesses():
model = GeometryFile("keycover.stl")
filament_colors = ['red', 'yellow', 'blue', 'orange', 'green', 'purple', 'black', 'white']
bottom_line_angles = list(arange(0,180+include_last, (180-0)/6)) # evenly spaced for 6 types of prints?
bottom_line_widths = list(arange(©.35,0.6+include_last, (.6-.35)/6))
evenly spaced for 6 types of prints? : doesn't conform to table
light_intensities = arange(0,500+include_last,10)
unclear what step size was used, or if discrete values were used?

lighted_photos = BatchMeasurements.empty()

for color in Parallel(filament_colors):
for config_id in Parallel(range(len(bottom_line_angles))):
fabbed_object = Printer.fab(model,
filament_color=color,
bottom_line_angle=bottom_line_angles[config_id],
bottom_line_width=bottom_line_widths[config_id])

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

for light_intensity in Series(light_intensities):
fabbed_object = Human.post_process(fabbed_object, f"light brightness of {light_intensity}")
lighted_photos += Camera.take_picture(fabbed_object, "bottom")

analyze(lighted_photos.get_all_data()) # analysis on minimum detectable illuminances, infill, etc.

Corrected Experiment. The authors told us that the experiment was actually carried out more as a while loop than a for loop. They
essentially turned the light from all-dark up to bright until the object started being detected correctly, and recorded the values.

@fedt_experiment
def materials_lighting_thicknesses():
model = GeometryFile("keycover.stl")
filament_colors = ['red', 'yellow', 'blue', 'orange', 'green', 'purple', 'black', 'white']
bottom_line_angles = list(arange(@,180+include_last, (180-0)/6))
bottom_line_widths = list(arange(0.35,0.6+include_last, (.6-.35)/6))
light_intensity = 0
intensity_step = 10 # wasn't quite this formal, but this is ok

lighted_photos = ImmediateMeasurements.empty()

for color in Parallel(filament_colors):
for config_id in Parallel(range(len(bottom_line_angles))):
fabbed_object = Printer.fab(model,
filament_color=color,
bottom_line_angle=bottom_line_angles[config_id],
bottom_line_width=bottom_line_widths[config_id])
is_detecting = False
while not is_detecting:
light_intensity += intensity_step
fabbed_object = Human.post_process(fabbed_object, f"light brightness of {light_intensity}")
photo = lighted_photos.do_measure(fabbed_object, Camera.image.set_feature("bottom"))
is_detecting = ExternalApp.analyze(photo)

analyze(lighted_photos.get_all_data())
A.8.4 Experiment: Different Printers. This experiment used different printers to determine how well settings matched across them.

Original Paper Description. Since G-ID takes as input universal units like millimeters (width) and degrees (angle), our method extends to
FDM printers other than the one we used for the experiments. To confirm this, we fabricated six test prints on the 3D printers Prusa i3
MK3S and Creality CR-10S Pro in addition to the Ultimaker 3 that we used for our experiments, and inspected the traces laid down with a
microscope. The line widths of the prints had an average deviation of 9.6um (Prusa) and 10.7um (Creality) from the Ultimaker 3 prints. The
line angles had an average deviation of 0.5°(Prusa) and 0.25°(Creality). These deviations are insignificant for our detection method since the
spacing values chosen for the parameters are much larger than these values. To verify this, we used our mobile app to take pictures of these
samples and ran our algorithm, which correctly detected the unique identifiers.

Replication in FEDT.

@fedt_experiment
def different_printers():
model = GeometryFile("keycover.stl") # maybe?
they are only testing bottom line widths and angles,
so I am assuming they use the same 6 configurations as above
bottom_line_angles = list(arange(0,180+include_last, (180-0)/6)) # evenly spaced for 6 types of prints
bottom_line_widths = list(arange(©.35,0.6+include_last,(.6-.35)/6)) # evenly spaced for 6 types of prints

printers = ['Prusa i3 MK3S', 'Creality CR-10S Pro', 'Ultimaker 3']
angular_deviation_results = BatchMeasurements.empty()

width_deviation_results = BatchMeasurements.empty()
photos = BatchMeasurements.empty()

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

for printer in Parallel(printers):
for config_id in Parallel(range(len(bottom_line_angles))):

fabbed_object = Printer.fab(model,
printer=printer,
bottom_line_angle = bottom_line_angles[config_id],
bottom_line_width = bottom_line_widths[config_id])

photos += Camera.take_picture(fabbed_object, "bottom")

instruction("Use a microscope to make the following measurements")

width_deviation_results += Calipers.measure_size(fabbed_object, "width of trace")

angular_deviation_results += Protractor.measure_angle(fabbed_object, "angle of trace to base")

analyze(angular_deviation_results.get_all_data())
analyze(width_deviation_results.get_all_data())
analyze(photos.get_all_data())

Corrected Experiment. The authors confirmed that they had used the same configurations as in the previous experiment. No corrections
were required.

A.8.5 Experiment: Different Cameras. This experiment explored the distance at which different cameras can reliably detect differences in
tagged objects.

Original Paper Description. Distance: If the phone is held too far away from the object, the camera cannot detect the detailed grooves on
the surface. To determine how far the camera can be held from the object, we took pictures with smartphones of different camera resolutions.
We found that the iPhone 5s (8MP) can resolve the slicing parameter features up to 26cm, Pixel 2 (12.2MP) up to 36cm, and OnePlus 6 (16 MP)
up to 40cm. Taking into account the cameras’ field of view, this means that users can fit in an object with one dimension as large as 29cm,
45cm, and 52cm, respectively. G-ID guides users into the correct camera distance by varying the size of the object outline displayed on the
user’s phone for alignment.

Replication in FEDT.

@fedt_experiment
def camera_distance():
cameras = ['iPhone 5s', 'Pixel 2', 'OnePlus 6']

fabbed_objects = [] # what? how many?
camera_data = BatchMeasurements.empty()

for camera in Parallel(cameras):
for fabbed_object in Parallel(fabbed_objects):
camera_data += Camera.take_picture(fabbed_object, f"bottom with {camera}")

analyze(camera_data.get_all_data())

Corrected Experiment. The authors discussed that they just used objects from above, and emphasized their view that this was more
intended to be demonstrative than scientific.

@fedt_experiment
def camera_distance():
cameras = ['iPhone 5s', 'Pixel 2', 'OnePlus 6']
fabbed_objects = [Printer.fab(x) for x in ['file_from_above.stl']]
camera_data = BatchMeasurements.empty()
for camera in Parallel(cameras):
for fabbed_object in Parallel(fabbed_objects):

camera_data += Camera.take_picture(fabbed_object, f"bottom with {camera}")

analyze(camera_data.get_all_data())

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

A.8.6 Experiment: Camera Angle. This experiment simulated different configurations and camera angles of rendered, tagged objects to see
how accurately they could be distinguished in theory.

Original Paper Description. Angle: Since our image registration technique uses affine transformation, it is not able to fully remove the
perspective distortion if the camera angle varies strongly. However, since our app guides users to align the object, the distortion is negligible.
To show our algorithm can robustly read bottom surface parameters on a variety of shapes, we created a virtual dataset similar to [28]. We
downloaded the first 600 models from the Thingil0K database [57] that have a rotationally non-symmetric base of appropriate size, sliced
them with a random set of slicing settings, and rendered the G-codes using 3D editor Blender. We placed the virtual camera at points located
on a spherical cap above the object base, with 8 evenly sampled azimuthal angles for each of the 5 polar angles. The percentage of shapes
read correctly for each polar angle value 0 is given in Table 2. The spacing values chosen for the parameters act as a buffer to prevent false
readings. The objects for which detection failed at small angles had rather rounded bases, which makes alignment challenging.

Replication in FEDT.

@fedt_experiment
def camera_angle():
models = [GeometryFile('thingilokdb.stl')] * 600
angles = [f"at {deg} deg, along azimuth {azimuth}" for deg in [4, 6, 8, 10, 12] for azimuth in range(8)]

images = BatchMeasurements.empty()

for model in Parallel(models):

bottom_angle, bottom_width, infill_pattern, infill_rotation, infill_density = random_param_set()

gcode = Slicer.create_toolpath(model,
infill_pattern=infill_pattern,
infill_rotation=infill_rotation,
bottom_angle=bottom_angle,
bottom_width=bottom_width,
infill_density=infill_density)

virtual_render = Blender.render_gcode(gcode)

for angle in Parallel(angles):

images += Camera.take_picture(virtual_render, angle)

analyze(images.get_all_data())

Corrected Experiment. No corrections were required.

A.9 Paper 9:KnitPicking Textures
Adapted from Hofmann, et al., 2019 [35].

A.9.1 Experiment: Texture Testing. This experiment knit every valid texture design that the team could run through their parser and
optimizer, and characterized their knitted properties and stretch under load.

Original Paper Description. Sampling Strategy Stanfield and Griffiths curated 300 knitted textures. Of these, the KnitSpeak compiler
interpreted 166 (55.3%) into Knit- Graphs which we machine-knitted. All textures in the book section “Bobbles and Leaves” were excluded
for using wide increases, decreases, and cables that violate Property 4. All other excluded patterns included annotations that described
actions that are not machine-knittable or included multiple yarns. We collected 1454 of the most recent and popular KnitSpeak samples from
the 5979 patterns on Stitch-Maps . We excluded 393 (27.0%) samples that were written in the round and 755 (51.9%) because they violated
Properties 1 or 2. We observed that these 755 samples were not textures but full patterns (e.g., sweaters) which are beyond the scope of this
study. Ultimately, we compiled and knit 306 (21.0%) textures from Stitch-maps.

Swatch Construction and Measuring We constructed and measured textures as follows: (1) machine knit a 60 loop by 60 course swatch
with an additional border including eyelets for alignment; (2) weigh the swatch; (3) lay the swatch on fine-grained sandpaper to prevent
curling; (4) photograph the swatch in the un-stretched state; (5) measure the un-stretched swatch across the center axes; (6) connect the
swatch to a stretching rig and load it with a constant mass; (7) photograph the stretched swatch; (8) measure the stretched swatch. Our
measurement station is shown in Figure 6.

We knit our swatches on an Shima Seiki SWG91N2 15-gauge v-bed knitting machine using Tamm Petit, a 2/30NM (8,147 yards per pound)
acrylic yarn with moderate twist. We used our machine’s digital stitch control system to regulate yarn tension and our stitch size was 40
with leading set 25. We tiled each texture to ft a 60 loop by 60 course swatch, then added knit-stitches to the borders to fill in the gaps. The
texture is surrounded by a 12-stitch-wide border of a checkered knit and purl texture to stabilize the swatch edges and normalize their
connection to the rig. We placed an eyelet at the center and ends of each edge of the swatch. To stretch a swatch, we hooked each eyelet to

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

rods that can roll freely in one direction, pulling the swatch linearly along its width and height. These rods were attached to 608g weights.
We gently dropped the weights off the edge of the table. We collected four measurements to derive gauge: stretched width (1) and height (2);
un-stretched width (3) and height (4). Gauge is the number of loops per unit width and height in a texture. Gauge decreases as a texture is
stretched. We calculated opacity as the count of black pixels (matching the sand paper background) shown through the knitted texture and
appearing per photograph.

Replication in FEDT.

class CustomProgram(DesignSoftware):
@staticmethod
def modify_design(knitfile: GeometryFile, feature_name: str, feature_value: str|int):
knitfile.updateVersion(feature_name, feature_value,
f"modify {knitfile.file_location}, set {feature_name} to {feature_value}")
return knitfile

@staticmethod
def knitcarve(knitfile: GeometryFile, specification: str):
return CustomProgram.modify_design(knitfile, 'knitcarve', specification)

@staticmethod
def basicremove(knitfile: GeometryFile, specification: str):
return CustomProgram.modify_design(knitfile, 'knitcarve', specification)

@staticmethod

def showToCrowdworker(obj: RealWorldObject, worker: int):
don't increment the version, because this isn't really postprocessing
pass

@fedt_experiment
def compare_knit_textures_from_dbs():
textures_from_db = []
for i in Parallel(range(306)):
textures_from_db.append(GeometryFile("texture{}.knit".format(i)))

knitted = []

weights = BatchMeasurements.empty()

for texture in Parallel(textures_from_db):
CustomProgram.modify_design(texture, "tile", "60x60 (fill gaps with knit stitches)") # automatable or manual?
CustomProgram.modify_design(texture, "edge", "12-stitch checkered knit/purl to edges")
single_knitted = KnittingMachine.knit(texture)
Human.post_process(single_knitted, "add eyelets to centre and end of each edge (8 eyelets)")
knitted.append(single_knitted)
weights += Scale.measure_weight(single_knitted)

analyze(weights.get_all_data())

dims = ImmediateMeasurements.empty()
photos = ImmediateMeasurements.empty()

for single_knitted in Parallel(knitted):
Human.post_process(single_knitted, "lay on sandpaper")
photos += Camera.take_picture(single_knitted)
dims += Calipers.measure_size(single_knitted, "unstretched length")
dims += Calipers.measure_size(single_knitted, "unstreteched width")
Human.post_process(single_knitted, "hook onto the rig and load with 608g")
photos += Camera.take_picture(single_knitted)
was there a photo of it stretched? I'm not clear on where opacity results are
dims += Calipers.measure_size(single_knitted, "stretched length")

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

dims += Calipers.measure_size(single_knitted, "stretched width")

analyze(dims.get_all_data())
analyze(photos.get_all_data())

Corrected Experiment. The authors indicated that the tiling and edging steps were a part of an initial instantiation step, rather than a
modification of an existing design. They also corrected our understanding about the eyelets: they are not “hardware” eyelets, but just part
of the knitted design (i.e., they are a CAD component, not a post-process component). Regarding loading, the authors informed us that
they loaded and unloaded the length and width axes separately, but always in the same order rather than in arbitrary orders. They further
clarified that some data whose gathering is described in the paper was not analyzed in the paper, and only included in a database later.

@fedt_experiment
def compare_knit_textures_from_dbs():
textures_from_db = []
for i in Parallel(range(306)):
texture = design("texture{}.ks".format(i), GeometryFile, {
"tile': '60x60 (fill gaps with knit stitches)',
'edge': '12-stitch checkered knit/purl to edges',
'eyelets': 'eyelets at centre and end of each edge (8 total)

b

textures_from_db. append(texture)

knitted = []

weights = BatchMeasurements.empty()

for texture in Parallel(textures_from_db):
single_knitted = KnittingMachine.knit(texture)
knitted.append(single_knitted)
weights += Scale.measure_weight(single_knitted)

analyze(weights.get_all_data())

dims = ImmediateMeasurements.empty()
photos = ImmediateMeasurements.empty()

for single_knitted in Parallel(knitted):
Human.post_process(single_knitted, "lay on sandpaper")
photos += Camera.take_picture(single_knitted) # this is the one that went into the opacity measurement
(black pixel count). data was collected and used but not reported in the paper, only in a db later.
dims += Calipers.measure_size(single_knitted, "unstretched length")
early samples measured with photos, then automatically with a reference object
dims += Calipers.measure_size(single_knitted, "unstreteched width")
for dimension in Series(['length', 'width']): # no concern about its being plastic, but
they did the following steps in consistent order anyway
Human.post_process(single_knitted, f"hook onto the rig and load with 608g on {dimension}")
photos += Camera.take_picture(single_knitted)
dims += Calipers.measure_size(single_knitted, f"stretched {dimension}")

analyze(dims.get_all_data())
analyze(photos.get_all_data())

A.9.2 Experiment: Crowd-sourced KnitCarving Evaluation. This paper took knitted patterns that were made narrower either naively or using
the KnitCarve algorithm and presented them to crowdworkers to compare with unmodified knit patterns.

Original Paper Description. We evaluated KnitCarving in a study with 200 crowd workers. Each worker rated the similarity of eight sets of
two images using a scale from 1 to 10 (10 being the very similar). The first image was a photograph of a texture swatch and the second image
was a photograph of swatch where the texture had some number of paths removed. We asked workers to compare the images based on a list
of features (i.e. skew, size, number of whole repetitions, stretch, opacity) with simple descriptions of how they apply to knitted textures.

We divided workers into two groups: 100 workers compared swatches that were narrowed with KnitCarving and 100 work- ers compared
swatches that were narrowed with a control algorithm that removes the right most loop from each course in a swatch. The control algorithm

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

may violate our Knittability properties, so some control swatches visibly unraveled (Figure 11). Workers were further grouped based on
what portion of the repetition was removed.

Eight textures were selected from our texture data set: two knit/purl patterns, two twist patterns, two cable patterns, and two lace patterns.
All eight textures were carved five times by one fifth of their repetition width. Within each texture category, one texture had a large repetition
(in the third quartile), and the other had a small repetition (at least five, in the first quartile). Within these constraints, we randomly selected
the textures.

We conducted seven independent-samples t-tests to compare the sum-total similarity score across (1) all textures per worker, (2-5)
individual texture types, (6) wide repeat textures, and (7) narrow repeat textures. Across all tests, KnitCarving per- formed significantly
better than the control algorithm. We summarize the results in Table 3.

Replication in FEDT.

@fedt_experiment
def crowdsource_knitcarve_comparison():
textures = [GeometryFile(f) for f in ['knitpurl_large.knit', 'knitpurl_small.knit',
"twist_large.knit', 'twist_small.knit',
'cable_large.knit', 'cable_small.knit',
'lace_large.knit', 'lace_small.knit']]

base = {}
carve = {}
naive = {}

for texture in Parallel(textures):
unaltered = KnittingMachine.knit(texture)
base[texture] = unaltered
for carve_level in Series(arange(1,5+include_last)):
carved = CustomProgram.knitcarve(texture, "remove {}/5ths of a repetition".format(carve_level))
naive_reduced = CustomProgram.basicremove(texture, "remove {}/5ths of a repetition".format(carve_level))
carved_phys = KnittingMachine.knit(carved)
naive_phys = KnittingMachine.knit(naive_reduced)
if not carve_level in carve:
carvel[carve_level] = {}
carve[carve_level][texture] = carved_phys
if not carve_level in naive:
naive[carve_level] = {}
naive[carve_level][texture] = naive_phys

workerpool_size = 200
ratings = ImmediateMeasurements.empty()
textures = list(base.keys())
for worker in Parallel(arange(1,workerpool_size+include_last)):
carve_level = worker % 5 + 1
comparator = naive if worker % 2 else carve # do I understand assignments correctly?
for texture in Parallel(shuffle(textures)):
CustomProgram. showToCrowdworker (comparator[carve_level][texture], worker)
CustomProgram. showToCrowdworker (base[texture], worker)
for aspect in Series(['skew','size', 'number of whole repetitions', 'stretch', 'opacity']):
ratings += Human.judge_something(comparator[carve_level][texture],
"worker {} compare to {3} based on {}".format(worker, base[texture], aspect))

analyze(ratings.get_all_data())

Corrected Experiment. The authors informed us of the reasoning between the particular patterns that they selected to test (they corresponded
to the chapters of a well-known book on knitting), and confirmed our understanding of worker assignment. They added that they did
randomize the order in which swatches were presented to crowd workers: this was not specified in the text, but represented a good practice
which they wanted encoded.

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

@fedt_experiment
def crowdsource_knitcarve_comparison():
textures = [GeometryFile(f) for f in ['knitpurl_large.knit', 'knitpurl_small.knit',
"twist_large.knit', 'twist_small.knit',
'cable_large.knit', 'cable_small.knit',

'lace_large.knit', 'lace_small.knit']]
base = {}
carve = {}
naive = {}

for texture in Parallel(textures):
unaltered = KnittingMachine.knit(texture)
base[texture] = unaltered
for carve_level in Series(arange(1,5+include_last)):
carved = CustomProgram.knitcarve(texture, "remove {}/5ths of a repetition".format(carve_level))
naive_reduced = CustomProgram.basicremove(texture, "remove {}/5ths of a repetition".format(carve_level))
carved_phys = KnittingMachine.knit(carved)
naive_phys = KnittingMachine.knit(naive_reduced)
if not carve_level in carve:
carvel[carve_level] = {}
carvel[carve_level][texture] = carved_phys
if not carve_level in naive:
naive[carve_level] = {}
naive[carve_level][texture] = naive_phys

workerpool_size = 200
ratings = ImmediateMeasurements.empty()
textures = list(base.keys())
for worker in Parallel(arange(1,workerpool_size+include_last)):
carve_level = worker % 5 + 1
comparator = naive if worker % 2 else carve
for texture in Parallel(shuffle(textures)):
for knit_object in shuffle([comparator[carve_level][texture], base[texturel]):
CustomProgram. showToCrowdworker (knit_object, worker)
for aspect in Series(['skew', 'size', 'number of whole repetitions', 'stretch', 'opacity']):
ratings += Human. judge_something(comparator[carve_level][texture],
"worker {3} compare to {} based on {}".format(worker, base[texture], aspect))

analyze(ratings.get_all_data())

A.10 Paper 10 : SPEERLoom

Adapted from Speer, et al., 2023 [77]. We skip an evaluation section in which the cost of various machines is compared, as no objects were
fabricated to assess this.

A.10.1 Experiment: Weaving Quality. This experiment created several designs on different looms and measured characteristics of their final
woven forms.

Original Paper Description. We evaluated SPEERLoom on weaving quality (number of warp yarns, EPI, and tension), warping efficiency
(winding and threading time), weaving efficiency (shedding time), and cost requirements (Section 3). We compare these results to other
Jacquard looms (two commercial looms (the TC2 [44] and the Jacq3G [25]), one DIY loom (Albaugh’s loom [1])) and a shaft loom (the
Ashford Katie Table Loom [16]). Warp winding and threading time were estimated based on the time taken by non-experts (SPEERLoom,
Albaugh’s loom, Jacq3g, and Ashford) and estimated by loom experts for the case of the TC2. Shedding time was timed for weaving basic
patterns where 50-58% of the warp yarns were raised.

For evaluation of SPEERLoom’s tension, we compare the measured tension to the Ashford shaft loom to ensure comparable variance
in per-yarn tension to a standard two-warp beam tensioning mechanism. Additionally, we evaluate our tension model through empirical
measurements, ensuring the equation estimates the final tension properly. We estimated p; and p through averaged measurements of

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

tension at different stages of the system in Figure 4. We first varied N and measured T; and T, to find u; by averaging calculated values.
We then varied T, and measured T3 to find uy by averaging calculated values. All Values of tension were measured with a tensiometer for
different stages of SPEERLoom’s tensioning system and the Ashford loom’s yarns.

Results

The results of the quantitative measurements taken for various looms are shown in Table 1 and discussed in the following sections.

Weaving Quality As shown in Table 1, SPEERLoom meets or exceeds the cloth properties (warp yarns and EPI) of other DIY looms. While
SPEERLoom produces cloth of lower quality than commercial looms, we found that SPEERLoom is able to weave cloth meeting design
requirements 3.3.1 and 3.3.2, specifically meeting the definition of quality cloth, as defined in Section 3.3.1 with regards to EPI, number of
warp yarns, and tension.

Figure 7 shows different cloths woven on SPEERLoom. SPEERLoom is able to weave basic patterns as well as more complex Jacquard
patterns (Req. 3.3.2). These patterns were woven at 12 EPI, giving a sufficient quality of cloth (Req. 3.3.1). While this EPI is not as fine as
commercial looms, it is more suitable for classroom use than other DIY options(Table 1). The lower EPI of Albaugh’s loom and other DIY
looms results in lower fidelity of patterning, reducing the complexity and visibility of patterns produced cloth.

Design requirements in Section 3.3 require SPEERLoom to be suitable for novice and experienced weavers. Student weavers in a class
taught with SPEERLoom (see Section 6) had a range of background experience with textiles, but were all able to accomplish weaving cloth
on SPEERLoom. The students created custom patterns with matrix multiplication which can be clearly seen in Figure 10.

Figure 8 shows the tension on SPEERLoom and the Ashford loom, demonstrating that SPEERLoom’s variance in tension is comparable
to that of the Ashford loom. SPEERLoom has an average of ~199g of tension with a standard deviation of ~10g (Req. 3.3.1). The Ashford
loom has ~63g of average tension with a standard deviation of ~28g. While the average tension of the two is different, this can be adjusted
on either SPEERLoom (by changing the compression of the spring) or the Ashford loom (by adjusting both warp beams) in order to ft the
needs of a specific weaving project. The variance of tension from yarn to yarn is something that cannot be easily adjusted on a two-warp
beam style loom, as it would require re-winding the back warp beam. SPEERLoom’s yarns however can be individually adjusted to create a
more consistent tension across all yarns. This shows SPEERLoom’s novel tensioning system is as consistent as an example two-warp beam
tensioning mechanism, while saving time when adjusting individual yarn tension (Regs. 3.3.1 and 3.1.1).

Replication in FEDT.

class SPEERLoomGUI (DesignSoftware, ConfigSoftware, ToolpathSoftware):
def create_design(features: dict[str,object]) -> GeometryFile:
return design('file.csv', GeometryFile, features, 'create the design in SPEERLoomGUI"')

@staticmethod
def modify_design(design: GeometryFile,
feature_name: str, feature_value: str|int) -> GeometryFile:
instruction(f"update {feature_name} to {feature_value} in SPEERLoomGUI")
design.updateVersion(feature_name, feature_value)

@staticmethod
def create_config(defaults=dict[str,object]|None, **kwargs) -> ConfigurationFile:
return design('file.csv', ConfigurationFile, defaults, 'create the configuration in SPEERLoomGUI ')

@staticmethod
def modify_config(config: ConfigurationFile,
feature_name: str, feature_value: str|int) -> ConfigurationFile:
instruction(f"update {feature_name} to {feature_value} in SPEERLoomGUI")
config.updateVersion(feature_name,feature_value)

@staticmethod
def create_toolpath(design: GeometryFile,
config: ConfigurationFile, *xkwargs) -> CAMFile:
instruction("render the toolpath in SPEERLoomGUI™)
return design('file.serial', CAMFile, 'create the serial code in SPEERLoomGUI')

@staticmethod
def modify_toolpath(toolpath: CAMFile,
feature_name: str, feature_value: str|int) -> CAMFile:
instruction(f"update {feature_name} to {feature_value} in SPEERLoomGUI")
toolpath.updateVersion(feature_name,feature_value)

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

class SPEERLoom(FabricationDevice, metaclass=NameableDevice):
uid = 'SPEERLOOM'
num_loom_threads = 40
@staticmethod
def configure(settings: dict[str, object]):
instruction(f"configure SPEERLoom like {settings}")

@staticmethod
@explicit_checker
def fab(input_geometry: GeometryFile|None=None,
configuration: ConfigurationFile|None=None,
toolpath: CAMFile|None=None,
default_settings: dict[str, object]|None=None,
xxkwargs) -> RealWorldObject:
return fabricate({'geometry':input_geometry, 'configuration':configuration,
'non-default':kwargs},
'run the arduino code on the SPEERLoom')

@staticmethod

'toolpath':toolpath,

def create_object(non_default_settings: dict[str, object], instr: str|None) -> RealWorldObject:

return fabricate(non_default_settings, instr)

@staticmethod
def describe(default_settings):
return f"a custom-made SPEERLoom with settings {default_settings}"

class TC2Loom(FabricationDevice, metaclass=NameableDevice):
uid = 'TC2LOOM'
num_loom_threads = 440
@staticmethod
def configure(settings: dict[str, object]):
instruction(f"configure loom like {settings}")

@staticmethod
@explicit_checker
def fab(input_geometry: GeometryFile|None=None,
configuration: ConfigurationFile|None=None,
toolpath: CAMFile|None=None,
default_settings: dict[str, object]|None=None,
xxkwargs) -> RealWorldObject:
return fabricate({'geometry':input_geometry, 'configuration':configuration,
'non-default':kwargs},
'run the toolpath on the TC2Loom')

@staticmethod

'toolpath':toolpath,

def create_object(non_default_settings: dict[str, object], instr: str|None) -> RealWorldObject:

return fabricate(non_default_settings, instr)

@staticmethod
def describe(default_settings):
return f"an off-the-shelf TC2 Loom with settings {default_settings}"

class Jacq3GLoom(FabricationDevice, metaclass=NameableDevice):
uid = 'JACQ3GLOOM'
num_loom_threads = 120

Savage, et al.

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

@staticmethod
def configure(settings: dict[str, object]):
instruction(f"configure loom like {settings}")

@staticmethod
@explicit_checker
def fab(input_geometry: GeometryFile|None=None,
configuration: ConfigurationFile|None=None,
toolpath: CAMFile|None=None,
default_settings: dict[str, object]|None=None,
**xkwargs) -> RealWorldObject:
return fabricate({'geometry':input_geometry, 'configuration':configuration, 'toolpath':toolpath,
'non-default':kwargs},
'run the toolpath on the Jacq3G Loom')

@staticmethod
def create_object(non_default_settings: dict[str, object], instr: str|None) -> RealWorldObject:
return fabricate(non_default_settings, instr)

@staticmethod
def describe(default_settings):
return f"an off-the-shelf Jacq3G Loom with settings {default_settings}"

class AlbaughLoom(FabricationDevice, metaclass=NameableDevice):
uid = "ALBAUGHLOOM'
num_loom_threads = 40
@staticmethod
def configure(settings: dict[str, object]):
instruction(f"configure loom like {settings}")

@staticmethod
@explicit_checker
def fab(input_geometry: GeometryFile|None=None,
configuration: ConfigurationFile|None=None,
toolpath: CAMFile|None=None,
default_settings: dict[str, object]|None=None,
*xkwargs) -> RealWorldObject:
return fabricate({'geometry':input_geometry, 'configuration':configuration, 'toolpath':toolpath,
'non-default':kwargs},
'run the toolpath on the Albaugh Loom')

@staticmethod
def create_object(non_default_settings: dict[str, object], instr: str|None) -> RealWorldObject:
return fabricate(non_default_settings, instr)

@staticmethod
def describe(default_settings):
return f"a custom-made Albaugh Loom with settings {default_settings}"

class AshfordLoom(FabricationDevice, metaclass=NameableDevice):
uid = "ASHFORDLOOM'
num_loom_threads = 320
@staticmethod
def configure(settings: dict[str, object]):
instruction(f"configure loom like {settings}")

@staticmethod

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

@explicit_checker
def fab(input_geometry: GeometryFile|None=None,
configuration: ConfigurationFile|None=None,
toolpath: CAMFile|None=None,
default_settings: dict[str, object]|None=None,
**xkwargs) -> RealWorldObject:
return fabricate({'geometry':input_geometry, 'configuration':configuration, 'toolpath':toolpath, 'non-default':kwarg:s
'run the toolpath on the Albaugh Loom')

@staticmethod
def create_object(non_default_settings: dict[str, object], instr: str|None) -> RealWorldObject:
return fabricate(non_default_settings, instr)

@staticmethod
def describe(default_settings):
return f"a custom-made Albaugh Loom with settings {default_settings}"

class Tensiometer:
tension = Measurement(
name="tension",
description="The tension of a particular yarn at a location.",
procedure="""
Insert the yarn to be measured into the device, read the display.

nun
’

units="grams",
feature="final stage yarn 0")

@staticmethod
def measure_tension(obj: RealWorldObject, feature: str=tension.feature, yarn: int='1"') -> BatchMeasurements:
instruction(f"Measure object #{obj.uid}, {feature}, yarn {yarn}.", header=True)

instruction(Tensiometer.tension.procedure)
return BatchMeasurements.single(obj, Tensiometer.tension.set_feature(f"{feature}, yarn {yarn}"))

@fedt_experiment

def evaluate_weaving_quality():
pattern = GeometryFile('basicpattern.csv') # how many patterns?
all_objects = []

tension
ul_tensions = BatchMeasurements.empty()
u2_tensions = BatchMeasurements.empty()
for loom in Parallel ([SPEERLoom, AshfordLoom]):
woven = loom.fab(pattern)
all_objects.append(woven)
for N in Series(range(10)): # what is N? what values can it take? is this series or parallel?
Human.post_process(woven, f"set N to {N}")
for woven_thread in Parallel(range(@,loom.num_loom_threads)):
for stage in Series(["T1", "T2"1):
ul_tensions += Tensiometer.measure_tension(woven, f"stage {stage}", woven_thread)
for T2 in Series(range(10)): # what values did T2 take? is this series or parallel?
Human.post_process(woven, f'"set T2 to {T2}")
for woven_thread in Parallel(range(@,loom.num_loom_threads)):
u2_tensions += Tensiometer.measure_tension(woven, f"stage T3", woven_thread)

analyze(ul_tensions.get_all_data())
analyze(u2_tensions.get_all_data())

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

warp yarns and EPI
quality = BatchMeasurements.empty()
for loom in Parallel ([SPEERLoom, Jacq3GLoom, AlbaughLoom, AshfordLoom, TC2Loom]):
woven = loom.fab(pattern)
all_objects.append(woven)
quality += Human.judge_something(woven, "number of warp yarns")
quality += Human.judge_something(woven, "ends per inch")

analyze(quality.get_all_data())

Corrected Experiment. We confirmed that our first loop structure was correct, but had to modify the second one (adjusting T2) to reflect
that it is a while loop structure, with the action performed as long as the thread hasn’t slipped. We also got initial conditions and step sizes
for the loops. For the weaving quality part, we added other patterns that were used for comparison.

Upon later reflection and a second look at the meeting notes and published paper, we realized that the tension/slipping section of this
experiment actually treats the SPEERLoom itself as a fabricated object which is being tested, rather than the fabricated weaves being the
objects tested. We did not make further corrections after agreement with the authors, but note this here and in the discussion.

@fedt_experiment

def evaluate_weaving_quality():
pattern = GeometryFile('plainweave.csv')
all_objects = []

tension
ul_tensions = BatchMeasurements.empty()
u2_tensions = BatchMeasurements.empty()
for loom in Parallel([SPEERLoom, AshfordLoom]):
for N in Series(arange(9, T+include_last, .1)): # could be Parallel, but easier in Series

loom.configure({"N": N})

woven = loom.fab(pattern)

all_objects.append(woven)

for woven_thread in Parallel(range(@,loom.num_loom_threads)):

for stage in Series(["T1", "T2"1):
ul_tensions += Tensiometer.measure_tension(woven, f'stage {stage}", woven_thread)

T2 = 75 # g of tension, added with weights
loom.configure({"T2": T2})
slipped = False
while not slipped and T2 <= 200:
woven = loom.fab(pattern)
for woven_thread in Parallel(range(@,loom.num_loom_threads)):
u2_tensions += Tensiometer.measure_tension(woven, f"stage T3", woven_thread)

T2 += 5
loom.configure({"T2": T2})
slipped = (Human.do_and_respond("adjust the weights", "did the thread slip?") == 'yes')

analyze(ul_tensions.get_all_data())
analyze(u2_tensions.get_all_data())

warp yarns and EPI
quality_patterns = [pattern, GeometryFile('custompattern.csv'),
GeometryFile('overshot.csv'), GeometryFile('12weave.csv')]
quality = BatchMeasurements.empty()
for pattern in Parallel(quality_patterns):
for loom in Parallel([SPEERLoom, Jacq3GLoom, AlbaughLoom, AshfordLoom, TC2Loom]):
woven = loom.fab(pattern)
all_objects.append(woven)
quality += Human.judge_something(woven, "number of warp yarns")

UIST °25, September 28-October 1, 2025, Busan, Republic of Korea Savage, et al.

quality += Human.judge_something(woven, "ends per inch")
in some cases, these judgements came from images of fabricated objects instead of making them locally

analyze(quality.get_all_data())

A.10.2 Experiment: Warping Efficiency. This experiment measured professionals and novices configuring various weaving machines to
understand how efficient their warping was.

Original Paper Description. (See above for some setup details)

Warping and Weaving Efficiency

We found that SPEERLoom was more efficient than all other looms with regards to warping efficiency (Req. 3.1.1). Weaving efficiency on
SPEERLoom exceeded that of other the other DIY loom (Req. 3.1.2).

SPEERLoom’s tension system and creel were designed to eliminate the need for winding a back warp beam to satisfy requirement 3.1.1.
This process can take approximately 3-5 hours depending on experience. SPEERLoom’s creel was assembled in 20 minutes by a researcher.
As shown in Table 1, SPEERLoom’s per warp time is quicker than that of other looms satisfying requirement 3.1.1. This saves students hours
of warping time for each warp pattern they wish to weave.

To further satisfy requirement 3.1.1, SPEERLoom is more efficient or as efficient as other looms with regards to threading. When measuring
threading time, beginners threaded the Ashford loom [16], Jacq3g [25], and SPEERLoom. Threading time for the TC2 [44] was reported
by Digital Weaving Norway. All threading time is reported per warp yarn to account for the difference in number of warp threads. An
important aspect of the loom threading process for beginners is that a large amount of time is spent correcting mistakes such as threading
yarn onto the wrong heddle or in the wrong order. During the threading process for each of the looms, users made several mistakes. The
difference we observed was in the time it took to recover from those mistakes. Threading yarn in the wrong heddle for the Ashford loom
[16] or Jacq3g [25] meant having to redo most of the threading process.

We observed novice student weavers threading SPEERLoom (see Section 6) and saw that when students made a mistake in threading their
loom, it took them on the order of seconds to recover from their mistake. This was due to SPEERLoom’s ability to control, place, and tension
each warp yarn individually, which enabled the students to swap and re-tension the affected yarns without having to re-thread any other
warp yarns (Req. 3.1.1). In this regard SPEERLoom is an improvement over the commercial and DIY alternatives.

Replication in FEDT.

@fedt_experiment
def evaluate_warping_efficiency():
timings = ImmediateMeasurements.empty()
for loom in Parallel ([SPEERLoom, Jacq3GLoom, AlbaughLoom, AshfordLoom, TC2Loom]):
if loom == TC2Loom:
timings += Human.judge_something(loom, "how long it takes to set up")
else:
timings += Stopwatch.measure_time(loom, "set up warps")
analyze(timings.get_all_data())

Corrected Experiment. While normally a stopwatch would be used to measure time, because of the extremely long setup time and the fact
that people were setting up their own looms for this experiment, they just asked people how long it took (the number was in some cases
more formal than in others).

@fedt_experiment
def evaluate_warping_efficiency():
timings = ImmediateMeasurements.empty()
for loom in Parallel([SPEERLoom, Jacq3GLoom, AlbaughLoom, AshfordLoom, TC2Loom]):
timings += Human.judge_something(loom, "how long it takes to set up")
analyze(timings.get_all_data())

A.10.3 Experiment: Weaving Efficiency. This experiment wove several designs on different weaving looms to characterize their shedding
time.

Original Paper Description. (See above for some setup information)

As shown in Table 1, SPEERLoom’s shedding time is on par with other looms and, while it is slower than commercial looms, still satisfies
requirement 3.1.2. The increase in shedding time over commercial alternatives is a direct result of the reduction in cost by a factor of 30. As
compared to a serial mechanism in Albaugh et al’s loom, SPEERLoom has a much decreased shedding time. This decreased shedding time is
a direct result of the increased cost for parallel actuation, but allows students to weave twice as fast. SPEERLoom’s shedding time was not
detrimental to students’ ability to weave quickly. Students weavers in a collegiate class were able to weave the projects shown in Figure 10
over the course of a single week (see Section 6). This duration of weaving is comparable to other looms. Additionally, students commented

FEDT UIST °25, September 28-October 1, 2025, Busan, Republic of Korea

that they feel as if they saved time weaving on SPEERLoom by having the opportunity to mathematically explore their cloth properties,
allowing for faster testing without requiring weaving time.

Replication in FEDT.
@fedt_experiment
def evaluate_weaving_efficiency():
pattern = GeometryFile("basicpattern.csv") # how many patterns? does shedding time depend on pattern?
timings = BatchMeasurements.empty()
for loom in Parallel ([SPEERLoom, Jacq3GLoom, AlbaughLoom, AshfordLoom, TC2Loom]):
physical_object = loom.fab(pattern)
timings += Stopwatch.measure_time(physical_object, "shed the loom")

analyze(timings.get_all_data())

Corrected Experiment. No corrections were required.

	Abstract
	1 Introduction
	2 Interactive Object Fabrication Workflow
	2.1 Workflow Phases
	2.2 Research Intervention in the Fabrication Workflow
	2.3 Identifying Workflow Variations via Descriptive Model
	2.4 Design Goals for a Tool to Support the Workflow

	3 FEDT
	3.1 Extended Example
	3.2 The FEDT Language
	3.3 The FEDT Library

	4 Evaluating FEDT
	4.1 Modeling Existing Experiments
	4.2 Walkthroughs with Fabrication Researchers

	5 Related Work
	5.1 Overviews of Fabrication Research and Evaluation
	5.2 Formal Grammars for HCI, for Fabrication, and for Workflows
	5.3 Open Science in HCI
	5.4 Experiments and Replicability in Other Fields

	6 Discussion
	6.1 Limitations
	6.2 Handling Randomness and Simulations
	6.3 Experiments and Experimentation Going Forward
	6.4 FEDT's Analysability and Group Analysis of Experimental Programs
	6.5 Applicability to Other Fabrication Processes
	6.6 Further Extensions

	7 Conclusion
	Acknowledgments
	References
	A Modeling 10 Exemplar Papers' Experiments
	A.1 Paper 1 : ./trilaterate
	A.2 Paper 2 : AirLogic
	A.3 Paper 3 : BlowFab
	A.4 Paper 4 : CircWood
	A.5 Paper 5 : Design, Mould, Grow!
	A.6 Paper 6 : ElectriPop
	A.7 Paper 7 : FabHydro
	A.8 Paper 8 : G-ID
	A.9 Paper 9 : KnitPicking Textures
	A.10 Paper 10 : SPEERLoom

