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Figure 1: ReefSense passively shades an artificial coral reef when temperatures are too high

Abstract

Corals are endangered from climate change, due to exposure to
sunlight during times of especially high water temperature. How-
ever, constantly shading corals also harms them. We thus introduce
ReefSense: a passive computational system that can help shade
corals using the energy of the ocean to sense and actuate. We have
prototyped and tested ReefSense setups with 3D printed— and off-
the-shelf components: the key aspect is that the system uses the
energy of temperature change and water flow to deploy shade when
it is needed. We discuss ReefSense, a bachelor thesis project, as a
point in a more general space of computation that can work with
nature instead of against it, and allow future computational systems
to integrate more tightly with the world.

CCS Concepts

« Human-centered computing — Interactive systems and
tools; « Applied computing — Computer-aided design; - Social
and professional topics — Sustainability.
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1 Introduction

Today’s computers power impressive general-purpose systems, but
have a high cost to create (in terms of extractive ecosystem damage)
as well as to operate (requiring electrical energy). Unconventional
computers, on the other hand, can be created from natural compo-
nents and run on natural power. This uniquely suits deployment in
remote, fragile ecosystems.

One such ecosystem is coral reefs. Corals can only tolerate a
certain level of thermal stress before they bleach, i.e. they expel
the symbiotic algae they depend on for food production through
photosynthesis [9]. Irradiance during high-temperature events can
compound the damage [2]. This combination of high water temper-
ature and high light exposure is especially problematic for shallow-
water, coastal corals [2], those on which millions of people depend
on for their livelihoods and diet [21].

We target these corals with ReefSense: a system integrating
temperature-responsive actuation into artificial reefs, aiming to
shade corals in periods of thermal stress. Our proposed system
has three components: sensing temperature increase, harvesting
power, and shading/un-shading the corals. We discuss prototypes of
these three sub-systems: a collection of 3D printed and off-the-shelf
components.
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ReefSense is intended to be integrated in 3D printable artificial
reefs [13, 15]. It is electronics-free, powered by water movement,
air pressure, and material expansion that interact through specific
geometric structures. Computation is purely geometric, resulting in
a (theoretically) fully printable system. ReefSense is thus a low-tech,
cheap, and low-impact alternative to advanced technologies [7, 29].

ReefSense demonstrates a novel form of computation that ad-
dresses a severe and urgent crisis: with a 2 °C global warming, 99%
of corals are predicted to die [5]. Beyond ReefSense’s prototypes,
we also discuss the further work required for ocean deployment
and envision how our designed components can be extended to
other applications.

2 Related Work

ReefSense builds off ideas about protecting coral reefs, as well as
work in designing non-electronic computation and WaterHCL

Scientists have discovered ways to mitigate bleaching, target-
ing one of two contributors: sunlight (through e.g., shading [2]
or scattering [29]) or temperature (especially through upwelling
cool water from the deep ocean [7]). We focus on shading with
ReefSense, as it requires relatively less energy.

Electronics-free computation offers various freedoms, and has
been an active area of research and development for 1000s of years.
With ReefSense, we use flueric computation concepts [18, 26] com-
bined with computation through materials’ behaviours when ex-
posed to heat [31-33] and mechanical force transmission [11].

While prior work has deployed playful interactions with water
[8, 24, 25], it has also bemoaned the need to waterproof electronics
to enable WaterHCI interaction without endangering computing
systems [22]. Importantly, ReefSense does not require waterproof-
ing, as it is electronics-free. Additonally, ReefSense’s sensing and
actuation actually take advantage of water properties to achieve
sensing and actuation, rather than seeing water as a disadvantage.

3 ReefSense
3.1 Physics and Mechanics

Building a system that is to be deployed in water brings many
requirements that differ from building systems that should work in
air related to its structure and materials. It also brings opportunities
for sensing: because material properties change with temperature,
it is possible to sense the heating ocean passively.

3.1.1 Density. At sea level, water is between 770 and 890 times as
dense as air [3]: a much larger weight will be exerted on a system
deployed in water than in air. Consequently, structural integrity
is important to withstand pressure. As the corals most susceptible
to bleaching live in shallow areas (< 5 m deep) [2], we fortunately
only need to target some additional weight.

3.1.2  Buoyancy. Water’s density means that submerged objects
will be subjected to buoyancy [3]. To prototype in PLA, we therefore
use high infill percentages to enable our object to sink, as PLA has
barely more density than water (see Table 1 [6]).

Linnea Andersen and Valkyrie Savage

Table 1: Densities of different materials and mediums. PLA
from Emiliano [6], all other values from Denny [3]. Air, fresh
water, and sea water reported at 20 °C

Medium Density, p (kgm™3)
Air 1.205
Fresh water 998.23

Sea water (3.5% salt) 1024.76

PLA 1240

Coral skeleton 2000

3.1.3  Temperature-dependent material properties. Water’s density
decreases as temperature increases. The Galilean thermometer re-
lies on this principle (Figure 3), including objects of varying den-
sities and observing how they sink or float. The ReefSense sensor
also relies on temperature-dependent floating to release gates and
open new areas of the structure.

Phase change materials can store and release thermal energy
during the process of melting and solidifying [30]. Among many
other uses, phase change materials are used in wax motors, which
use thermal expansion to achieve a pushing force [12]. In some of
our prototypes, we leverage a wax motor as both sensor and power
source.

3.2 Prototype Systems

To create an artificial reef that responds to changing water temper-
ature by creating shade, we require:

(1) A power source or harvester

(2) A temperature sensor

(3) A method of power transmission
(4) An actuator

Specifically, we need the system to keep the reef unshaded when
temperature is below a threshold (the off state) and to shade the
reef when temperature is above a threshold (the on state).

We explored different approaches and made prototypes with
focus on implementation [10]. All of our 3D printed prototypes are
printed on a Bambu Lab X1-Carbon printer with Bambu Lab PLA
Basic 1.75 mm. For all prints, we have printed with 0.2 mm layer
height. For initial prototypes we used 15% infill density to quickly
ensure structural function, and later increased to 85-100% to ensure
the printed objects sink in water.

We have so far prototyped two major system designs: System 1
relies on water flow released by a Galilean thermometer to generate
energy via a waterwheel and mechanically deploy a shade. System
2 uses the expansion of a wax motor to sense temperature change
and generate kinetic energy directly.

3.2.1 System 1. System 1 (see Figure 2) uses pressurized water
flow as a power source. The water flow is unlocked through a
Galilean thermometer sensor with one marker that triggers at =30
°C, which between the on and off states toggles a pinch valve to
allow water flow. The water moves through the system in 5 mm
diameter plastic tubes, and a waterwheel and gearing system create
actuation. Shading is achieved through a hand-fan-like mechanism.
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Table 2: Summary of two different approaches to ReefSense.

PS = Power source. PT = Power transmission.

Component  System 1 System 2

PS Pressurized water Wax motor

Sensor Galilean thermoscope Integrated in wax motor

PT Gears and water flow Gears

Actuator Opens "hand fan" shade  Opens "camera shutter” shade

Ree§ Sense

A ctuwato

Sensoc

Figure 2: An overview of System 1 in on state

SENSOR

thermoscope~__

temperature marker

O tube connected

1o power source

pinch valve
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/' ' to waterwheel

Figure 3: Illustration of the Galilean thermoscope sensor

weights

We have initial prototypes of the components of System 1, but
did not integrate them into an end-to-end system. Sketches are
shown in Figures 2 and 3, and photos of the sub-parts are in the
Evaluation section.

3.2.2 System 2. System 2 uses a wax motor as both power source
and temperature sensor. As temperature increases, the wax inside

the wax motor melts and expands, which causes an arm to move.

A gear is attached to the end of the arm, and as the arm reaches a
specific rotation (in degrees), this gear moves past a second gear
attached to a camera-shutter-like shade, which then opens. As

Figure 4: System 2 in off state

the temperature drops, the arm will move back, closing the shade.
This system has been fully achieved through prototypes, which are
shown in Figure 4.

Our System 2 prototype uses a non-electronic automatic window
opener !, intended to regulate temperature in greenhouses. It con-
sists of a wax-based temperature sensor and two arms. We fixate
one arm to a 3D printed stand, thus only the other arm moves as
temperature increases. To the moving arm, we have attached a 3D
printed slider with a partial spur gear. The proportion of the gear
that is present controls the temperature at which the next compo-
nent is actuated; we use a 20 °(/360) gear. When the arm rotates, the
spur gear passes by a gear system mounted on the shade, which
then opens.

4 Evaluation

We have explored various designs for each component of ReefSense
and evaluated the components both individually and as part of
their respective full systems through experimental validation [14].
Experiments are summarized in Table 3.

5 Discussion And Future Work

ReefSense suggests interesting possibilities for the future of artificial
reefs that go beyond merely hosting corals to measure and compute.
Below, we discuss next steps in our prototypes, as well as the open-
ended potential of the concept.

5.1 Deployments for in-ocean reefs

So far, we have evaluated ReefSense in a plastic box, using tap water.
In-ocean deployment brings additional challenges and opportuni-
ties.

In particular, our next steps include using nature-appropriate
materials. PLA is both bio-based—based on plant starch [28]—and
biodegradable, but degrades slowly in water [1]. This means the
system will last longer before degrading, but if parts break off, the
plastic persists and possibly interferes with ocean life. We are ex-
ploring using our clay 3D printer with terracotta—often used in
artificial reefs [15] to encourage the settlement of coral larvae—or

!purchased at www.silvan.dk


www.silvan.dk

AAR Adjunct 2025, August 18-22, 2025, Aarhus N, Denmark

Linnea Andersen and Valkyrie Savage

Table 3: Summary of experiments performed to evaluate ReefSense. (1) refers to System 1 and (2) to System 2

Experiment Setup

Results

Comment

We submerged a weighted water bottle in
water, heating up the water, and observ-
ing when it sinks (see Figure 5)

We submerged the system in water, heat-
ing up the water, and observing the tem-
perature at which opening of the shade
starts and is completed (see Figure 9)

We rotated the shade mechanically by
pulling with a spring scale, measuring the
required force in and out of water (see
Figure 6)

Temp. sensitivity (1)

Temp. sensitivity (2)

Torque required (1)

Torque required (2)
Water pressure loss (1) We applied power using a bottle with wa-
ter at different points in the system, ob-
serving whether actuation occurs (see Fig-
ure 7)

We applied power using a bottle with wa-
ter to the full system (above water without
the pinch valve controller) (see Figure 8)
We tested the full system underwater us-
ing two shade sizes, heating/cooling the
water, and observing actuation (see Fig-

Full system (1)

Full system (2)

The bottle sank after a 7.9 °C in-
crease

The shade started opening at
26.1 °C and was fully opened at
27.0°C

0.458Nm force required above
water; 0.553N'm below water, i.e.
submersion creates a 20.7% in-
crease

With the pinch valve controller,
we cannot drive the waterwheel.
Removing it, we can

Still insufficient water pressure
to open shade

Both prototypes opened with
temperature increase and closed
(partly) with temperature de-

Improved sensitivity could be
achieved with a larger temper-
ature marker

How fast the shade opens de-
pends on gear sizes

In both cases the force is rel-
atively small; hydrodynamics
could be improved with thinner
wings with sharper edges
Remains to be evaluated
Significant water loss suggests
new approaches are needed in
future prototypes

Higher-pressure power source
needed

The shade didn’t close entirely
in some repetitions due to diffi-
culty placing sensor relative to

ure 9) crease actuator
i}
19
\
[ 4
—

Figure 5: Setup for determining the required weight of the
temperature marker and the temperature sensitivity of the
thermoscope (System 1).

bioconcrete made from seashells [13]. Some of our prototype com-
ponents are not currently printed, and will require special material
consideration [16]. 3D printing in other materials will impact our
systems’ characteristics (weight, hydrodynamics, density), so we
will repeat our evaluation methods as we iterate. Integrating con-
cepts like Degrade to Function [19] will also allow us to embrace
the eventual degradation of our system in the ocean.

Figure 6: Setup for evaluating required torque (System 1)

While water can be seen as a design challenge, it can conversely
be an opportunity. Our prototype sensors rely on water’s temperature-
based expansion and high thermal mass.Future work could turn
further water properties into opportunities, such as viscosity, cohe-
sion, adhesion, and index of refraction—these suggest new types of
sensors, timers, actuators, and other computational structures. We
also want to explore harnessing ocean energy to power the system:
System 2 uses thermal energy as power, while System 1 could use
ocean currents. The accumulation of algae could also be encouraged



Demonstrating ReefSense: Leveraging water properties to create computational, climate-adaptive, artificial reefs

(a) (b)

Figure 7: Setup for evaluating loss of water flow. (a) Power
source used directly resulting in the water wheel turning
under water. (b) Water flow goes through the pinch valve
controller, and the wheel does not turn under water.

Figure 9: Setup for evaluating System 2 end-to-end and test-
ing temperature sensitivity
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(design-wise or through specific material use) in places where it
would enhance structural integrity rather than hinder interaction.

5.2 Enhancing and Expanding ReefSense

5.2.1 Enhanced computation. We plan to unite our two system
designs: the water flow from System 1 would allow for logical
operation using water-tuned versions of AirLogic widgets [26], e.g.
to only shade the reef if both temperature AND light levels are too
high. In future research, we will tune AirLogic to work with water
instead of air. This will also require integrating new sensors, such
as bio-inspired photo actuators [4].

We further envision expanding ReefSense to be able to struc-
turally store information in off-line memory devices [27], enabling
long-term temperature and wave modeling. Unlike today, when
surface water temperature is used as a proxy for temperature at
the depth of the corals [20], systems like ReefSense could measure
and respond to actual conditions. In terms of waves, many artificial
reefs are currently deployed to break waves before they hit the
coast [15]: by leveraging the fact that water becomes denser as it
becomes deeper, we could create devices that track the depth of
waves passing over the reef.

5.2.2 Design tools. A reef’s needs for size, shape, degree of shad-
ing, and other specific environmental factors all depend on its
specific characteristics. This calls for a ReefSense design toolkit
that can help designers simulate and create customized ReefSense
deployments for specific artificial reefs. Here we are hopeful for
collaborations with biologists or ecologists [17] that can help us
consider unforeseen issues [23].

6 Conclusion

We demonstrated ReefSense, a system of prototypes integrating
(fluidic) sensing and actuation into artificial reefs. Our prototypes
demonstrate a method to shade artificial reefs from sunlight that
put corals at risk of bleaching under high sea temperatures. We de-
scribed how two different ReefSense systems are achieved through
prototypes, measured the performance of both system and dis-
cuss further work needed to achieve computing artificial reefs.
We believe our work can contribute to the creation of sustainable,
electronics-free interactive objects that can aid humans in respond-
ing to the climate crisis through mitigating coral bleaching.
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