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Abstract

Fabbed to Sense: Integrated Design of Geometry and Sensing Algorithms for Interactive
Objects

by
Valkyrie Arline Savage
Doctor of Philosophy in Computer Science
University of California, Berkeley

Professor Bjorn Hartmann, Chair

Task-specific tangible input devices, like video game controllers, improve user speed and
accuracy in input tasks compared to the more general-purpose touchscreen or mouse and
keyboard. However, while modifying a graphical user interface (GUI) to accept mouse and
keyboard inputs for new and specific tasks is relatively easy and requires only software
knowledge, tangible input devices are challenging to prototype and build.

Rapid prototyping digital fabrication machines, such as vinyl cutters, laser cutters, and
3D printers, now permeate the design process for such devices. Using these tools, designers
can realize a new tangible design faster than ever. In a typical design process, these machines
are not used to create the interaction in these interactive product prototypes: they merely
create the shell, case, or body, leaving the designer to, in an entirely separate process,
assemble and program electronics for sensing a user’s input. What are the most cost-effective,
fast, and flexible ways of sensing rapid-prototyped input devices? In this dissertation, we
investigate how 2D and 3D models for input devices can be automatically generated or
modified in order to employ standard, off-the-shelf sensing techniques for adding interactivity
to those objects: we call this “fabbing to sense.”

We describe the capabilities of modern rapid prototyping machines, linking these abilities
to potential sensing mechanisms when possible. We plunge more deeply into three examples
of sensing/fabrication links: we build analysis and design tools that help users design, fabri-
cate, assemble, and use input devices sensed through these links. First, we discuss Midas, a
tool for building capacitive sensing interfaces on non-screen surfaces, like the back of a phone.
Second, we describe Lamello, a technique that generates lasercut and 3D printed tine struc-
tures and simulates their vibrational frequencies for training-free audio sensing. Finally, we
present Sauron, a tool that automatically modifies the interior of 3D input models to allow
sensing via a single embedded camera. We demonstrate each technique’s flexibility to be
used for many types of input devices through a series of example objects.
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Chapter 1

Introduction

Design is not just what it looks like and feels like. Design is how it works.

— Steve Jobs

Our environment is replete with products that have dedicated physical user interfaces
like game controllers, musical instruments or personal medical devices. While the ubiquity
of smart phones has led to a rise in touchscreen applications, retaining physicality has impor-
tant benefits such as tactile feedback and high performance manipulation [54]. For example,
gamers prefer physical input for speed and performance, musicians for virtuosity and con-
trol. Rapid additive manufacturing technologies enable designers and makers (henceforth
we refer to both groups jointly as “makers” or “designers”) to quickly turn CAD models
of such future devices into tangible prototypes. While such printed form prototypes can
convey the look and feel of a physical device, they are fundamentally passive in that they
do not sense or respond to manipulation by a user. Building integrated prototypes that also
exhibit interactive behavior requires adding electronic sensing components and circuitry to
the mechanical design (see Figure 1.1).

Existing research has developed electronic toolkits that lower the threshold of making
physical prototypes interactive [5, 34]. However, such toolkits still require makers to manu-
ally assemble printed parts and sensors. Such assembly may also require significant changes
to a 3D model (e.g., to add fasteners or split an enclosure into two half shells). Detailed
electro-mechanical co-design is time-consuming and cumbersome and mismatched with the
spirit of rapid prototyping. Alternatively, makers may instrument their environments with
sensors [4, 129], setting up specially-calibrated cameras and projectors to add interactivity,
but these approaches limit interactive testing to the lab in small, restricted areas.

We aim to uncover the most cost-effective, fast, and flexible ways of sensing digitally-
fabricated input devices. This suggests several requirements:

1. cost-effective : we substitute commodity sensors available in laptops and smartphones
for custom electronic parts where possible. We focus on single-sensor techniques, where
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Figure 1.1: Makers use 3D printing to explore case form factors for interactive objects,
like Dave Mellis’s mouse (left, from https://www.flickr.com/photos/mellis/5644225593/
in/album-72157626129511674/, @@®@) or Thingiverse author srepmub’s game controller (cen-
ter, from http://www.thingiverse.com/thing:337896, by permission). Even professional
designers use 3D printing for form-finding. However, this technique requires two separate
processes: designing the case, then designing the functionality, typically in the form of cir-
cuitboards.

sensing of multiple user inputs can be achieved by affixing a sensing apparatus to a
single point, thereby reducing cost and assembly overhead.

2. fast : fabrication and assembly of senseable devices should not take significantly longer
than comparable passive devices. Necessary digital modifications should be performed
automatically when they involve complex or global changes, or be reduced to templates
that the user may drag in when simple.

3. flexible : the means of sensing a prototype object should not impose undue burden
on the physical designs of that object. Sensing techniques should accommodate a wide
variety of input types (e.g., buttons, sliders, and dials) and body types (e.g., convex,
concave, 3D).

We propose a novel way of ensuring these properties: users create digital design files, which
our tools modify automatically based on knowledge of the sensing technique that will ul-
timately be used. Users then fabricate their modified models using digital fabrication ma-
chines. Because the physical models are precisely fabricated based on the digital design
files, this process creates a link between the digital and physical models. Post-fabrication,
we leverage this link to inform sensor processing: that is, we feed digital model data to our
sensing algorithm, from which the algorithm extracts information about dimensions and in-
put components, predicts information about properties, or calculates other relevant details.
This allows us to avoid training and/or improve sensing for the interactive prototype.
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1.1 Contributions

This thesis explores the realm of physically prototyping tangible input devices using digital
fabrication machines, pushing towards a world in which prototyping physical interactive
devices is as easy as prototyping GUI devices is today. We have built several prototype
design and sensing systems designed to test different parts of the design space. Thus, this
thesis makes the following contributions:

1. Fabbing to sense: a model and sensing co-design technique which uses knowledge
of a particular sensing paradigm to automatically modify digital design files before
fabrication, allowing improved or training-free sensing of the fabricated prototype. We
offer three exemplars of this technique: Midas, Lamello, and Sauron.

2. Midas, a method for automatically generating custom capacitive touch sensors—cut
from adhesive-backed conductive foil—by synthesizing sensor pads and routing con-
nections from a high-level graphical specification. We also demonstrate a design tool
using this method to enable users to fabricate, program, and share touch-sensitive pro-
totypes. Using our tool, we describe an evaluation demonstrating Midas’s expressivity
and utility to designers

3. Lamello, a technique using passive plastic tine structures, 3D printed at interaction
points and with predictable vibrational frequencies, to create passive tangible inputs
sensed via audio. We describe a design pipeline which predicts tine frequencies (and
an evaluation that they can be accurately predicted) and senses user manipulation
of components in real time. We also include a discussion of information encoding
techniques useful for this technique, and a series of scripts to generate parts utilizing
these encodings.

4. Sauron, a design tool enabling users to rapidly turn 3D models of input devices into
interactive 3D printed prototypes where a single camera senses input. We detail our
method for tracking human input on physical components using a single camera placed
inside a hollow object, and two algorithms for analyzing and modifying a 3D model’s
internal geometry to increase the range of manipulations that can be detected by a
single camera. Finally, we describe an informal evaluation of our implementation of
these techniques usable on models constructed in a professional CAD tool.

1.2 Dissertation Outline

This section presents a brief outline of the structure of this dissertation by chapters.

This dissertation first investigates the capabilities of modern digital fabrication machines
and discusses sensing techniques compatible with those capabilities. Second, we lay out a
solid foundation of related work. We then discuss three instances of analysis and design
tools that help users design, fabricate, assemble, and use input devices sensed in a variety of
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ways; for each technique we demonstrate its flexibility for use in many types of input devices.
Finally, we conclude with suggestions for future work.

Fabrication & Sensing (Chapter 2)

This chapter explores modern digital fabrication machines—3D printers, laser cutters, and
CNC mills, among others—and the properties that can be employed in objects they fab-
ricate. We break down these properties, specifying which are inherent to materials, which
are inherent to particular production processes, and which machines can currently realize
objects with which properties.

Chapter 2 further discusses sensing techniques compatible with those capabilities, as well
as what makes each technique promising for further investigation as a technique for sensing
fabricated input device prototypes. Again, we focus on techniques which require a single
sensing apparatus attached to a single point on an object. For example, we discuss the
potential combination of 3D printed conductive metal with Hall effect sensors; running a
current through the object could generate a magnetic field detectable by the sensors. This

thesis ultimately selects a few points to further examine in this space, described in Chapters
4-6.

Related Work (Chapter 3)

We lay out the existing research landscape, describing which parts may have been overlooked
and explaining which areas we explore in this thesis. In general, we draw heavily on work
from four major traditions: simulation, sensing digitally-fabricated devices, modeling 3D
objects, and creating prototypes.

Simulation

Pre-fabrication simulation was one of the first explorations fabrication research. This kind of
pre-processing can, for example, account for deformities from specific printing processes [48],
or ensure occlusion-free toolpaths [36]. More recently, computer graphics researchers have
leveraged pre-print simulation of multi-material printers to control post-print deformation
behaviors [13] and appearance [56]. We, too, perform pre-print simulation and optimization
of 3D models, but for the purpose of creating interactive objects.

3D CAD Tools

Many professional tools for 3D modeling exist [2, 94|, and they serve their target users
well. Researchers have made significant strides in inventing new styles of more accessible
interactions for 3D modeling, for example by capturing users’ hand-carving processes and
converting them to toolpaths [127] or scanning, augmenting, and reproducing clay models
[102]. For the purposes of our investigations in this thesis, we created design tools to help
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author objects compatible with our sensing techniques: they are a complement to, rather
than a replacement for, existing CAD tools research.

Sensing Digitally-Fabricated Devices

Sensing forms a key component of interactive devices, and thus has been significantly ex-
plored in the past. One common technique for sensing objects uses machine learning and
guided manual training to detect interactions using sound [82, 57], capacitance [89] or other
signals. Our techniques focus on sensing done without machine learning, and often without
any training at all. Inspired by “Sensing through Structure” [110], we design objects whose
properties we know, which can inform how we sense them.

Prototyping Tools

Abundant research has examined questions around the types of prototypes that designers
build in the course of designing a new object [47]. Other work looks further into more facile
ways of creating functional electronic devices, for example using snap-together circuits [63,
42, 120] or smart circuit substrates [119]. One important limitation of these investigations is
that they are limited to a constrained library of manufactured components: designers must
make do with what they can buy. We conversely focus on customizable inputs that can be
configured exactly as a designer wants them, and these customizations can be performed in
software on a digital model. Once an object is assembled, its functionality must be defined.
We leverage techniques like programming by demonstration (PBD) [75, 42] to help users
define their objects’ interactivity, however our focus is on design of the objects themselves.

Midas: Capacitive Sensing of Custom 2D Layouts (Chapter 4)

Our first exploration examines fabrication of 2D conductive materials sensed capacitively.
Midas explores how to prototype touch-based interactions where input and output are not
co-located, as they are on touch screens. Designers are given a drag-and-drop authoring
system to create capacitive touchpads on the surface of objects, and from these designs
generates 2D design files for fabrication. These files can then be cut from a conductive
material and sensed using an automatically-configured microcontroller board. Midas also
offers support for programming the input devices designed via PBD and websockets.

The advantages of capacitive sensing in this manner are numerous. It can be deployed
on any flat, singly curved, or developable object’s surface (see Figure 1.2). The sensors
are cheap and easy to fabricate—whether on a vinyl cutter, using a circuitboard mill, or
in inkjet printed conductive ink. Sensor assembly is fast: users simply need to attach the
sensor dongle’s wires to their fabricated sensor pads (e.g., using Z-axis transfer tape).

In this chapter, we will detail Midas’s implementation, as well as discussing possible uses,
drawbacks of the current system, and work for the future.
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Figure 1.2: A Midas-generated interface with buttons for checking email mounted on the
back of a smart phone.

Lamello: Acoustic Sensing of 2D /3D Mechanisms (Chapter 5)

Second, this thesis dives into an examination of acoustic-based sensing for devices fabricated
in 2D, 3D, or a combination. The Lamello project investigates the use of tine-like structures
for repeatable and predictable audio frequency generation. These tines can be printed at
interaction points (e.g., under the path of a human input slider) such that they are struck
when a user manipulates input components. The mechanical vibrations created by striking
the tines can be detected with a contact microphone and classified using frequency analysis
(see Figure 1.3).

Leveraging uniform 2D lasercut or 3D printed plastics as sound-creating input devices of-
fers flexibility to designers with different levels of access to fabrication machines. In addition,
beyond Midas’s offering of flat input surfaces activated by a simple touch, Lamello explores
input mechanisms that users can push, slide, and turn. The technique of passive audio gen-
eration for sensing also opens up opportunities in the future Internet of Things: multiple
unpowered Lamello-type input devices may be placed in the environment and sensed by a
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Figure 1.3: A Lamello-based interface with a series of plastic tines on a slider, which can be
classified by the attached contact microphone.

single microphone, perhaps located on a laptop or smartphone.

This chapter details our experiments confirming that our 3D-printed tine structures be-
have in predictable ways in spite of the non-uniform nature of the materials that comprise
them. We also discuss, using several exemplars, techniques for integrating the tines into
existing input component designs. Further, we describe information encoding principles for
tine generation.

Sauron: Vision-Based Sensing of 3D Printed Mechanisms
(Chapter 6)

Finally, we explore full 3D input devices sensed using computer vision. Sauron is a design
and sensing toolkit for creating 3D printed input devices—which can include components
like joysticks or dials—sensed with a single embedded camera. The Sauron tool makes
automatic modifications to allow for this sensing, reconfiguring the interior parts of the
inputs and performing interference simulation (see Figure 1.4).

Sauron’s interfaces have additional flexibility over those for Midas or Lamello: they allow
continuous sensing of user input. Sliders need not be composed of individual capacitive
sensors or a series of tines, but any arbitrary position along the track may be sensed. They
can be fabricated on any 3D printer which can generate support material, and the pre-
fabrication simulation process relies only on geometry rather than any particular materials
properties for its processing.

In this chapter we describe our implementation of Sauron as a plugin for a commercial
CAD tool, as well as the vision sensing code we built. Finally, we elaborate on limitations
of the current system and places we may improve it, as well as future work in the area.
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Figure 1.4: A Sauron-optimized game controller with a joystick, a direction pad, and several
buttons.

In this chapter we describe our implementation of Sauron as a plugin for a commercial
CAD tool, as well as the vision sensing code we built. Finally, we elaborate on limitations
of the current system and places we may improve it, as well as future work in the area.

Conclusion & Future Work (Chapter 7)

The final piece of this thesis reviews the contributions described and re-evaluates assumptions
made in the projects constituting its main chapters. Namely, our projects leverage a single
fabrication machine for creating one prototype at a time, which is hand-optimized by a
designer and sensed by a single sensor. Re-evaluating these leads to interesting pointers for
future work in ecologies of multiple fabrication machines, branching prototypes, machine-
optimized prototype designs, and usage of combination sensors that can still be mounted at
a single point.

1.3 Statement of Multiple Authorship and Prior
Publication

The research presented in this dissertation was not undertaken by me alone. While I initiated
and led all projects described herein, I must acknowledge the contributions of my talented
group of collaborators: without their efforts, this research could not have been realized in
its current scope.

In particular, Midas’s routing features were implemented by Xiaohan Zhang, and the
video was created by Lora Oehlberg. Andrew Head performed much debugging and audio
testing on the Lamello project, and that project benefited from the wisdom of my collab-
orators Dan Goldman (who provided the initial idea), Gautham Mysore, and Wilmot Li



CHAPTER 1. INTRODUCTION 9

at Adobe. Sauron’s computer vision was implemented by Colin Chang, and many thanks
are due Mark Oehlberg for assisting in the creation of the necessary circuitboards for that
project.

My advisor, Bjorn Hartmann, provided invaluable advice and guidance on all projects
detailed in this document.

This dissertation is partially based on papers previously published in ACM conference
proceedings; I am the primary author on all publications. In particular, Midas was published
at UIST 2012 [99]; Lamello at CHI 2014 [101]; and Sauron at UIST 2013 [98].

So, let’s do this thing.
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Chapter 2

Fabrication and Sensing of Input
Devices

In addition to the profound repercussions these technologies will likely have on
the manufacturing industry, the democratization they enable promises to unleash
creativity and innovation at a level comparable to those brought about by the
personal computer and the internet.

— Catarina Mota, The Rise of Personal Fabrication [70]

Our goal is to enable simple construction of input devices. The route that we choose to
take for this is digital fabrication, as it allows us to create prototypes whose properties we
can modify, predict, and thereby sense. As a framework to consider how this will work, we
lay out the puzzle in five pieces:

1. User action

2. Transformative mechanism
3. Material characteristic

4. Senseable change

5. Sensor selection

Each input device designed under our paradigm takes a user action and transforms it
through some type of mechanism. The mechanism is constructed from materials with various
properties, and the combination of materials properties, user interaction, and transformative
mechanism lead to a senseable change; all that’s left is to select a sensor that can detect it.
This flow relates to the concept that input devices are like onions, with many transformative
layers between a user’s action and the use of the sensed data (see Figure 2.1).

Thanks to digital fabrication, we can use foreknowledge of the mechanism to be fabricated
along with its predicted properties to make sensing easier. For example, perhaps we desire to
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Figure 2.1: Input devices are like onions, with many layers of processing between the user’s
action and actual interface code (from [29], by permission).

sense a user’s physical action (e.g., pushing, sliding, or turning). Some processes can create
tine structures (cantilevered beams); we place these tines under a printed mechanism that
transforms a user’s action into tine plucks. When struck, these tines vibrate at frequencies
determined by their geometry and material; the knowledge of these two things and the fact
that our chosen material is rigid and sound-conducting means that we have a senseable change
in the form of vibration (sound). We can sense the tines’ vibrations with a microphone, and
decode the signal for use in our application. We need not train the algorithm beyond giving
it the digital design file—we can predict the tines’ vibrational frequency from that and our
knowledge of our selected material’s properties.

2.1 User Actions and Transformative Mechanisms

Stu Card, et al., describe the design space of input devices using movement operators (lin-
ear/rotary, absolute/relative, movement/force) and composition operators (merge, layout,
connect); they represent each input device as a tuple detailing user manipulation, the input
space, the device’s current state, the resolution or mapping function from input space to
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output space, the output space, and “additional aspects of how a device works” [20]. Since
our focus is on the construction of such input devices, we refer the interested reader to
Card, et al.,’s description of user inputs and possible transformative mechanisms therefor.
By way of example, some common user inputs that we may wish to track include touching,
pushing, squeezing, sliding, or twisting. Useful transformative mechanisms include the 3D
printed spring-based components used for Sauron and the tine strike transformation used
for Lamello. Other transformative mechanisms may include converting a strong puff of air
into a rotating motion using a turbine, or using magnets, conductors, and a shaking motion
to create current.

This chapter will describe the spaces of materials properties (and how they relate to
modern digital fabrication machines) and sensors. Further, we will discuss potential “links”
between these, as in the tine example above.

2.2 Definitions

First, we briefly define words and machines that will be discussed in this chapter and the
remainder of the thesis.

additive fabrication In additive fabrication, material is deposited and a shape is built up.

subtractive fabrication A subtractive fabrication process removes material to create a
form. Excess material may be reused in another project or discarded.

3D printer A 3D printer is one of a class of machines that additively create a three-
dimenstional model from one or more materials.

FFF FFF (fused-filament fabrication) 3D printers lay down material by melting and de-
positing a filament in a precise pattern.

model material Model material is the substrate that composes the final object.

support material Many modern 3D printers are capable of laying two types of materials,
model material and a secondary, sacrificial material that can support overhangs in the
model during printing, then be removed.

SLA SLA (stereolithography) printers use a bath of UV-curable polymer and a controllable
UV laser. The laser "draws” each layer on the polymer, causing photopolymerization
where it strikes. Excess material is simply poured out for reuse.

SLS SLS (selective laser sintering) 3D printers contain a bed of material (e.g., metal powder)
which is compacted and formed into a solid mass of material by heat and/or pressure
without melting to the point of liquefaction. Excess material can be brushed off and
reused.
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binder jetting Binder jetting is a powder-based printing technique similar to SLS, but
instead of melting a powder together to create layers this method uses inkjet heads
that drip a binder (e.g., epoxy) to adhere the powder particles. Unbound powder can
be brushed off and reused.

PolyJet PolyJet printers have print heads similar to those of inkjet printers which sweep
across the build area depositing material. Following the printer head is a UV light,
which cures deposited material droplets.

vinyl cutter A vinyl cutter subtractively processes 2D materials with a 2-axis knife blade,
cutting patterns into them. Vinyl cutters are typically used for thin, flexible materials.

laser cutter A laser cutter guides a laser’s output over a 2D domain for processing flat
materials. Laser cutters can cut or engrave into materials, and are often used for rigid
1

materials < 7 inch thick. Some have rotary attachments for engraving on circular

surfaces like the outside of a glass.

CNC router A CNC router uses a 3-axis rotary mill to cut through thick, rigid materials,
like wood or certain metals. Some CNC routers are portable and can attach to many
materials, while some are stationary with beds into which material is loaded.

CNC mill A CNC mill is a multi-axis machine which subtractively creates a 3D shape from
a block of material, usually metal or wood.

These definitions are duplicated for convenience in Appendix B.

2.3 Material Characteristics (and Digital Fabrication)

Digital fabrication machines are those which can take as input a digital design file, in 2D,
2.5D, or 3D, and output a physical realization of that design. A design created in a computer-
aided design (CAD) tool is processed by a computer-aided manufacturing (CAM) tool to
create machine instructions to generate the object. This workflow stands in contrast to
traditional crafting techniques (which do not require machine code) as well as traditional
manufacturing techniques (which require “tooling” for each design created). The true power
of digital fabrication lies in its ability to create unique objects on each machine run without
the extensive setup and tooling necessary to change the product created by, for example,
an injection moulding machine. This comes with the blessing and curse that each instance
of an object costs as much to manufacture as the one before it, but allows for variations
between instances without additional cost [135]. For example, ev