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Figure 1: We use a capacitive sensing technique to measure changes in wrist profiles (A), which allows inferring the force (B)
and grasp (C) used to interact with external objects. This enables digital input on unaugmented physical objects mediated by
a wristband (D).

ABSTRACT
We demonstrate rich inferences about unaugmented everyday ob-

jects and hand object interactions by measuring minute skin surface

deformations at the wrist using a sensing technique based on capac-

itance. The wristband prototype infers muscle and tendon tension,

pose, and motion, which we then map to force (9 users, 13.66 +/-

9.84 N regression error on classes 0–49.1 N), grasp (9 users, 81 +/- 7

% classification accuracy on 6 grasps), and continuous interaction

(10 users, 99 +/- 1 % discrimination accuracy between 6 interactions,

89–97 % accuracy on 3 states within each interaction) using basic

machine learning models.
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We wrapped these sensing capabilities into a proof-of-concept

end-to-end system, Ubiquitous Controls, that enables virtual range

inputs by sensing continuous interactions with unaugmented ob-

jects. Eight users leveraged our system to control UI widgets (like

sliders and dials) with object interactions (like “cutting with scis-

sors” and “squeezing a ball”). Finally, we discuss the implications

and opportunities of using hands as a ubiquitous sensor of our

surroundings.
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1 INTRODUCTION
As a wearable device on the wrist, smartwatches offer a useful

vantage point to sense the prehensile movements of the hand. Re-

cent research has demonstrated how sensing the fine-grained hand

activity provides context about user activity and intent, and even ob-

ject recognition. Prior work has demonstrated classifying repeated,

fine hand motions via acceleration signals [40], as well as identi-

fying objects held in the hand via EMG signals [17]. In this work,

we examine how we can further increase contextual awareness

about user activities and their environment: we infer properties

of unaugmented everyday objects and the user’s interaction with

those objects by measuring continuous, instantaneous changes of

wrist topography with capacitive signals.

Ourwristband prototype infuses an electrical signal into the body

and houses a capacitive sensor matrix to measure topographical

changes at the wrist (see Figure 1). As the distance between a

localized patch of skin and a sensor’s receiver antenna varies, so

does the capacitive charge. By measuring these minute skin surface

deformations at multiple points near the wrist, it is possible to infer

isometric muscle tension, tendon movement, and hand pose and

motion.

Using machine learning, we map anatomical features like tendon

tension, pose, and movement beneath the skin’s surface to interac-

tion properties like force, grasp, and object shape. Additionally, our

approach enables discrimination of hand gestures and extends pre-

vious gesture recognition research by also precisely regressing the

state within range interactions. Combining those sensing capabili-

ties, this also enables ad hoc ubiquitous input controls leveraging

the affordances of unaugmented objects: instead of instrument-

ing every water bottle and elastic band with touch or deformation

sensors, we shift sensing to the wrist and examine the interaction

between a hand and object. Sensing a hand’s grasp and movement

relative to an object means that users can appropriate an object’s

mechanical affordances as input for computational purposes—such

as stretching a rubber band to zoom a map or twisting a bottle cap

to adjust volume level.

Given our wristband prototype, the contributions of this paper

are: (1) a sensing technique that measures wrist topography; (2)

an evaluation of how topographical wrist profiles can enable infer-

ring hand-object interactions; (3) an exemplar end-to-end system

enabling ad-hoc virtual range inputs by sensing continuous hand

interactions with everyday objects. The paper is structured as fol-

lows: we discuss related work, then present the hardware prototype

including an evaluation of similarity between different users’ wrist

anatomy. Next, we describe a design space which links anatomical

features at the wrist to derivable object and environmental prop-

erties and interactions; we evaluate inferring force from tension,

grasp and object shape from pose, and dynamic interaction from

motion through user studies. Through an end-to-end system and

usability study, we demonstrate the technology’s ability to distin-

guish gestures and to regress the state within interaction ranges

for virtual input in ubiquitous environments.

2 RELATEDWORK
Our work sits at the intersection of wrist-worn sensing and inter-

action with objects in ubiquitous environments.

2.1 Wrist-Worn Sensing Techniques
The wrist is an appealing location for sensing hands, as it does not

interfere with dextrous finger use and does not suffer from external

object occlusions. Prior work used smartwatches to monitor user

activity and recognize objects in the user’s environment, e.g., with

electromagnetic signals [42], EMG [17], bio-acoustic signals [41], or

audio plus inertial data [40]. This monitoring allows a portable sys-

tem to display contextual information, but offers limited dynamic

control of interactive systems. Others explore different sensing

techniques to detect freehand gestures: Digits [37] leverages an

infrared camera, Wristflex [15] uses an array of force sensitive

resistors, Tomo [83] relies on electrical impedance tomography,

Serendipity [76] and TapID [54] employ IMUs, SensIR [52] uses

near-infrared sensing, and Capband [70] explores flexible capacitive

sensors. Others use EMG [55], but given muscle locations this is

more suited to the forearm [35]. Interferi [33] measures ultrasonic

signals with piezoelectric transducers, and beyond recognizing ges-

tures investigates continuous tracking tasks like regressing weights

and smile intensity. Our work goes in a similar direction by focus-

ing on properties of the interaction between hand and object, and

additionally uses more-granular activity monitoring to precisely

map pose and interaction to virtual controls. Another wearable sys-

tem focused on properties of hand-object interaction is fSense[6],

which uses photoplethysmography to discriminate two levels of

force during common gestures.

While we also target a wristband form factor, we leverage wrist

topography (broadly related to mechanomyography or MMG, first

described by Grimaldi in 1665 [24]) to measure motions and hand ac-

tivity. With MMG, an accelerometer, microphone, or high-accuracy

laser near a muscle can “hear” its motion, and even infer fatigue

[69]. MMG has been deeply explored in medical literature (for a

review see [38] or [34]), but has seen little adoption in HCI, in

spite of the fact that it has been shown to have a higher signal-

to-noise ratio than electromyography (EMG) [22] and improved

sensing in locations away from the muscle belly [4]. Earlier ap-

proaches measured skin deformation [15, 20, 27, 60, 70], but our

band is tuned for fast-changing and highly-localized sub-millimeter

wrist changes associated with grasping and interacting with ob-

jects, rather than global freehand gesture classification or on-body

tapping. GestureWrist [60] presented 6 capacitive electrodes around

the wrist to detect simple static poses; we go further with more

receivers and more flexible detection. Photo-resistors have been

also used to capture wrist contours, but are hard to scale; Fukui et

al. [20] and ThumbSlide [2] used 75 and 16 photo resistors respec-

tively and focused exclusively on capturing the index finger sliding

along the thumb. EMPress [53] combined 4 force sensitive resistive

(FSR) sensors with 4 EMG electrodes, and Liang et al. [44] used 5

capacitive pressure sensors. Liu, et. al. [47] explored accelerometer-

based MMG to classify discrete gestures with a fixed wrist. While

pressure– and inertial-based approaches use fewer sensors, they

are still limited to a small set of gestures inadequate for capturing

complex interactions with objects. Again, our work extends these

https://doi.org/10.1145/3490149.3501320
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earlier mechanomyography explorations by sensing force through

tension, examining continuous range inputs in a ubiquitous envi-

ronment, and using capacitance-based skin surface sensing easily

scaled to high-detail wrist captures.

Some approaches have explored skin deformation and MMG

principles at the back of the hand. Lin et al. [45] used four strain

gauge sensors directly on top of the skin to detect hand gestures.

Similarly, photo reflective sensor arrays on the back of the hand

can measure detailed skin deformation for hand pose reconstruc-

tion [39, 68]; however these solutions impact hand mobility. More

recently, vision-based systems with micro RGB [78, 81] or thermal

cameras [31], mounted on the wrist facing the back of the hand,

have been paired with CNN-based models for hand reconstruction.

While these enable freehand interactions, leverage wide lenses em-

bedded in a watch [78], and can be tuned for complex static poses

such as sign language [10], they are still sensitive to occlusion from

object interactions or finger-crossing and cannot measure internal

state such as muscle tension.

2.2 Interaction with Objects in Ubiquitous
Environments

Ubiquitous computing [75] proposes a rich set of interaction paradigms

that move away from earlier “natural” computing ideas [3] in which

wall-based computers reacted to pointing and voice commands

[59, 72]. This newer vision suggests leveraging the affordances

[21] of physical devices in UI design [65] and looking at everyday

objects opportunistically as input devices [28]. Similar to Instant

Controls (ICon) [12], Instant User Interfaces [13], and Ephemeral

Interactions [74], we appropriate a wide range of everyday objects

for interaction in our exemplar end-to-end system, but we avoid

the need to physically augment the objects or environment. Object

augmentation has been explored with visual markers [12, 28] and

RFID tags [19]; alternatively, objects can be registered and tracked

in real time using cameras [13, 74], but this limits the set of objects

to those registered with the system and requires an instrumented

environment.

Mobile devices can overcome this limitation, with their multiple

portable sensors enabling interactive everyday objects to be used

peripherally, for example in an office desk or kitchen tabletop envi-

ronment [57]. Instrumenting the fingertip with a micro-camera [79]

or an RFID reader [71] has also been explored. Smartwatches can

enable rich multi-modal inputs using microphones—such as slap-

ping and banging the forearm, blowing, or tapping the foot [29]—in

situations where one or both hands are busy.

Movement in space around the body can enable proprioception-

enhanced inputs [11], further extending body-centric approaches [73]

including for running or cycling [25]. Subtler interactions, like using

the principles of magic to disguise embedded devices in everyday

objects [1], are also possible, but again require instrumentation of

the objects. While true micro-gesture– and grasp-based input has

been examined through elicitation studies [5, 49, 64], it has been

under-explored in implementation or achieved with limited setups

like FingerInput’s use of an overlooking depth camera [66]. Our

approach removes those constraints by instrumenting the wrist
instead of the object and focusing on the dynamic use of everyday

objects. This is also related to Affordance++ [48]—but with a focus

on objects as input rather than output from objects—and further

extends the idea of hands as a controller [5].

Previous work has often used surface mapping to create UIs

on surfaces [26, 30, 77, 84]. We argue that this goes against the

ubiquitous computing vision: these created overlays are similar

to today’s mobile devices, centralizing interaction on augmented

surfaces. Annexing Reality [30] and Gripmarks [84] are closer to our

presented end-to-end system. Annexing Reality re-targets proxy

shapes in the environment for haptic feedback in VR, andGripmarks

focuses on passive-but-graspable objects. They both appropriate

surfaces for interaction and focus on shape affordance, while our

approach leverages objects’ non-shape properties and interactive

capabilities to enable ubiquitous inputs.

3 SENSING SKIN SURFACE DEFORMATIONS
AT THEWRIST

3.1 Capacitive Sensing at the Skin Surface
Our proposed sensing technique uses parallel plate capacitors

1
:

capacitance C ∝∼ A surface area of the conductor plates and C ∝ 1

d
the distance between the plates. We use the skin itself as a “plate”:

movement and deformation of the skin causes a change in d (and

thusC). Unlike accelerometers used inMMG [34, 38], capacitors can

measure changes in d (e.g., vibration) without directly contacting

the skin or dampening its motion. Laser-based range sensors can

also measure displacement contact-free, but from a form factor

perspective capacitive sensors are more compact than lasers.

3.2 Sensing At the Wrist
The wrist is our sensing location of choice: wrist-worn devices

are unobtrusive and do not restrict hand motion or grasp. Addi-

tionally, watches are common wearable devices, which suggests

that a sensing technique in this form factor has a path to wider

adoption. With this location and form factor in mind, we discuss

the input features that can be sensed at the wrist and relate them

to underlying anatomical features.

The hand and fingers are controlled by tendons that pass along

the anterior and posterior of the wrist to terminate with muscles in

the forearm. The muscles and tendons of the upper limb typically

exist in oppositional pairs, with flexors on the anterior of the hand,

wrist, and forearm; and extensors on the posterior side. Abduction

and adduction of the fingers is controlled by muscles intrinsic to

the hand, i.e., that do not have a presence in the wrist. All thumb

control tendons (flexion, extension, abduction, and adduction for

all joints) pass through the wrist. The wrist proximal to the head

of the ulna is home to the musculotendinous junction of these

tendon/muscle pairs—the transition zone that connects pure muscle

and pure tendon (see Figure 2).

When a muscle contracts and pulls a tendon, the musculotendi-

nous junction moves, and the skin and subcutaneous fat layers

nearby are pulled down into the space evacuated by the muscle-

tendon unit. As this pliable potential space is filled or emptied, a

user’s skin surface topography changes. Localized uplift or subsis-

tence of the epidermis corresponds to specific tendons. For example,

the extensor pollicis brevis and –longus are responsible for thumb

1
https://en.wikipedia.org/wiki/Capacitor#Parallel-plate_capacitor

https://en.wikipedia.org/wiki/Capacitor#Parallel-plate_capacitor
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Figure 2: Wrist anatomy: nerves annotated in yellow, arter-
ies in red, tendons in blue. Base image fromGray [23], public
domain (left). Our wristband overlaps this anatomy (right).

Figure 3: The heatmap receive layer (left) and our sensor
stackup (right). A signal infused onto the skin from an ante-
rior pad, along with the skin’s uplift and subsidence, causes
a change in d relative to an array of electrodes above the
wrist posterior.

extension; contractions of these muscles result in skin surface move-

ment exhibited near the head of the radial bone. By referencing the

underlying forearm anatomy, skin surface changes in this region

can be mapped to thumb extension.

3.3 Wristband Prototype
Our wristband prototype, as noted, treats the skin as a plate in the

parallel plate capacitor model. A high-frequency (254 kHz) electrical

signal is “infused” on the skin by a soft pad covered in conductive

fabric on the anterior wrist, and received by a 4x14matrix of printed,

flexible electrodes (each 4.75 mm x 4.75 mm, pitch 5 mm) statically

positioned≈2mm above the skin of the posterior wrist (see Figure 3).

These reported dimensions are the design used in our final studies,

namely the Interaction Study in Section 4.2.2 and the Application

Study in Section 5. Our grasp and force studies in Sections 4.1.1 and

4.2.1 use a 3x11 matrix of 6 mm x 6 mm electrodes (less density),

while the topographical profiles study reported in Section 3.5 uses a

15x4 matrix of 4.75 mm x 4.75 mm electrodes (wider overall). These

changes represent our evolving understanding of device signals;

we consider the theory of operation and the connection between

skin-surface measurement and the environment as more impor-

tant contributions than a particular wristband incarnation. The

wristband prototype uses Tactual Labs’
2
sensing platform, which

provides high frame rate, low latency measurements of capacitive

signal strength based on the work of Leigh, et al. [43].

Our studies focus mainly on extensor tendons, where the printed

receivers are located. Flexor tendon motion is captured at a gross

level: flexor motion changes wrist shape and coupling of the infu-

sion pad, seen as a change in overall transmitted signal magnitude

not localized to a particular matrix sensor. Inverting the prototype

can swap the resolutions, but in conducting this work we observed

the anterior skin has a larger range during interaction and more

inter-user variation.

3.4 Signals for Sensing
Our prototype generates a 2-dimensional “heatmap” indicating

physical location of 16-bit capacitive magnitude signals, sampled

2
https://www.tactuallabs.com/

Figure 4: Topographical skin surface profiles for ten peo-
ple, ordered from smallest to largest forearm circumference,
across one row of the 75 mm sensor matrix. Profiles were
recorded on right anterior wrist with fingers extended.

Figure 5: Topographical skin surface profiles for three place-
ments (rows) on five participants (columns), across one row
of the sensor. These were recorded on the right anterior
wrist with fingers extended. Colors are for legibility and do
not necessarily represent participant skin colours.

at 794 Hz. The band streamed data to the PC via Tactual Labs’

USB/Bluetooth drivers, which was processed using Python scripts.

Our data collection software, written in C++, allows defining a

gesture list and recording duration. When starting a recording, a

user is presented with a description and/or video of the gesture to

perform; clicking a button begins recording. During recording, a

live but abstract visualization of captured heatmap data is displayed.

The tool continuously receives band information, stores it in a buffer,

and writes to a timestamped CSV when recording is done.

3.5 Sensor Placement on the Wrist
We conducted a pilot data collection to understand our sensor’s

sensitivity to different users and placements.

3.5.1 Procedure. Users placed the extra-wide (15x4) wristband

with the matrix over the anterior of their right wrist. The wrist

was held supinated (i.e., palm-up) with fingers extended flat. Users

removed and replaced the band five times in the same location. We

recorded one frame of data in each placement. Collections lasted

less than 5 minutes.

We also used a conductive rod and gantry to test our sensor;

measuring the rod’s physical position relative to the sensor’s re-

ported signal allowed us to fit a power function mapping sensor

signal magnitudes to distances from the sensor in mm. We applied

this to our recorded data for analysis and visualization.

3.5.2 Participants. From our organization we recruited 10 partici-

pants (2F, 8M). Wrist circumferences varied between 152 and 205

mm (Mdn=186.5 mm, IQR=16.75 mm).

3.5.3 Results. We transformed our raw data into topographical

maps with the aforementioned power function (see Figure 4). A pair-

wise Procrustes analysis
3
between users’ first placements yields

disparities of .01–.44 (M=.10, SD=.09); this large disparity suggests

that using skin-surface profiles necessitates per-user calibration.

3
https://en.wikipedia.org/wiki/Procrustes_analysis ; this is often used in the biolog-

ical sciences to measure similarity between organic structures of varying scale and

translation

https://www.tactuallabs.com/
https://en.wikipedia.org/wiki/Procrustes_analysis
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Pair-wise Procrustes analysis within-users yields disparities of .00–

.18 (M=.05, SD=.04), suggesting similarity between placements but

that models with small amounts of data may be unstable (see Fig-

ure 5). Between-user disparity was moderately correlated to wrist

circumference difference, r(43)=.36, p=.01. We thus focus on single

placements on single users as a base case for our technique. Also,

our wide sensor, particularly on large wrists, seems to cause signif-

icant sensor-wrist contact at the ulnar and radial edges (while our

goal is 2mm hover): we narrow our sensor in later studies to focus

on the tendons.

4 INFERRING HAND INTERACTIONS FROM
WRIST PROFILES

We now turn our attention to changes in skin surface topography

caused by mechanical displacement and vibration of muscle con-

tractions, as well as uplift and subsidence of moving or tensing

tendons. This is closely related to Mechanomyography (MMG). We

discuss features of objects and the environment which can be in-

ferred using skin surface topography: specifically, we look at how

pose, motion, and tension can aid in sensing the shape of and user’s
interaction with an object. We thus explore a) measuring forces

exerted at the fingertip, b) discriminating different grasps and ges-

tures, and c) identifying states within ranges of gestures, across

3 user studies. All were conducted remotely in 2020/2021 during

lockdown, leading to adaptations:

• users administered their own data collections using a mouse,

and thus interactions were performed unimanually.

• each user had a personal, bespoke wristband, leading to

signal and performance variation.

4.1 Tension →Force
Tendons and muscles are subjected to “loads” corresponding to

weight or force, resulting in changed contraction profiles [67] or

tension. Thus, musculotendinous activity is a proxy for force, which

can be theoretically differentiated per finger (as finger tendons are

independent). Load can be introduced on the muscles and tendons

via either direct user actions (pressing on a table) or static object

properties (the weight of a soup can).

4.1.1 Force Study. As our interest is a user’s interaction with the

world rather than the world’s interaction with a user, we focus on

user-generated forces.

Procedure:We used 9 small springs with different spring con-

stants for which the length at maximum compression force was

the same (.2"). Participants wore the band on the posterior of their

dominant hand wrist, with their hand pronated and wrist held still.

In each recording, forefinger and thumb were stably held .2" apart,

and between them was either one of the 9 springs or nothing (i.e.,

0 force required) (see Figure 6). Recording order was randomized,

and we collected each condition 5 times for a total of 50 recordings.

Each recording was .5 s in length, and we collected 50 heatmap

frames. Compression forces for the 9 springs ranged from 4.45–49.1

N (4.45 N, 8.4 N, 11.1 N, 22.3 N, 24.7 N, 30.3 N, 32.3 N, 44.7 N, 49.1

N), determined by what was available from McMaster-Carr at time

of purchase. Based on user comments, we believe these adequately

cover the comfortable range of forces for an average person’s pinch.

Figure 6: Users in our force study used 9 springs with differ-
entmaximum compression forces, plus a “no spring” 0 force
case, whichwere all heldwith index finger tip and thumb tip
.2" (≈5mm) apart. Someusers’ hands visibly deformedunder
different forces, as can be seen here with one participant in
the 0 N (left), 22 N (centre), and 49 N (right) cases.

Participants: From our organization, we recruited 9 users (2F,

7M) whose ages range from 26–42 (Mdn=33, IQR=4) and whose

wrist sizes range from 143–198 mm (Mdn=161.0 mm, SD=15.44 mm).

All users were right-handed.

Results: Per-user compression force regression models had av-

erage error 13.66 N (SD=9.84 N) across all users.

Following Interferi’s weight regression and extrapolation analy-

sis [33], we first performed tests in which, for each user, one set of

10 recordings was left out and regressed from the other four sets.

This gave average error 12.39 N (SD=9.62 N) using scikit-learn’s
MLPRegressor with default parameters, lbgfs solver, and tanh ac-

tivation. We repeated the test, leaving out each force class and

regressing it from the others using the same setup; this gave av-

erage error 13.66 N (SD=9.84 N). Although this error is relatively

high, to our knowledge ours is the first method trying to derive

pinch force with a hands-free wrist-based sensing approach, and we

see value for discriminating more-tolerant force levels, e.g., button

presses with different pressure intensities or rough assessment of

strength. We expect these results to transfer to other grasps where

users exert force involving other sets of fingers (e.g., squeezing a

rubber ball or a sponge).

4.2 Pose and Motion→Shape and Interaction
Muscles and tendons in the wrist work together to move our fingers,

and their pose correlates to hand pose, which is related to object

shape. Their motion correlates to finger motion—whether user-

initiated (I wiggle my finger) or environmentally-initiated (you

wiggle my finger)—and to interaction patterns when an object or

surface is involved.

We demonstrate mapping tendon and muscle pose and motion

to user grasp, object shape, and interactions.

4.2.1 Grasp Study. While many grasp taxonomies exist [7, 14, 16,

46, 63], we focus on Feix, et al.,’s [18]. We selected grasps covering

power and precision, as well as differing opposition structures. To

ensure we were sensing grasp rather than weight, we fabricated all

objects from identical weights of identical materials and only tested

objects that could be held entirely within the hand (i.e., we did not

use anchored objects). This limited the grasps that we were able

to test, as the variance in objects’ sizes to afford different grasps is

large; we settled on 6 grasps using medium-sized objects.

Procedure: Using a uniform-density PlayDoh-like material, we

created sets of four objects using molds and hand-shaping: a sphere

(radius 4.25 cm), a cylinder (length 15 cm, radius 2.55 cm), a plate

(length 13 cm, width 13 cm, thickness 1.8 cm), and a sphere with a
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Figure 7: Users in our grasp study used 4 different molded
objects (left) to perform 6 different grasps (right): power
sphere (a), precision sphere (b), palmar pinch (c), parallel ex-
tension (d), medium wrap (e), and adducted thumb (f).

pinched lobe (radius 4.25 cm). Each object comprised 300 g of ma-

terial. We avoided 3D printing to ensure uniform material density.

Each participant used a distinct set of objects for health reasons,

but used the same set of 4 objects throughout their recording.

Participants wore the band on the posterior of their dominant

hand wrist, with their hand pronated and wrist held still. Partici-

pants did sequential recordings: in each, they held one of the objects

in a stable grasp: adducted thumb andmedium wrap on the cylinder,

power sphere and precision sphere on the sphere, parallel extension
on the plate, and palmar pinch on the lobed sphere (see Figure 7).

We recorded each grasp 10 times, for a total of 50 recordings. Each

recording was .5 s, during which we recorded 50 heatmap frames.

Participants: From our organization, we recruited 9 users (2F,

7M) whose ages range from 26–42 (Mdn=33, IQR=4) and whose

wrist sizes range from 143–198 mm (Mdn=161.0 mm, SD=15.44 mm).

All users were right-handed.

Results: Per-user grasp classification had average accuracy 81

% (SD=7 %) across all users. Per-user held-object classification had

a (predictably) higher average accuracy of 87 % (SD=7 %) across all

users (see Figure 8).

We used generic machine learning models from scikit-learn
with default parameters, as our interest is in the data’s presence

rather than an optimally-designed model. We tested classification

and regression trees (CART), linear discriminant analysis (LDA),

logistic regression (LR), naïve Bayes (NB), linear support vector clas-

sification (LinearSVC), and support vector classification (SVC). For

grasp classification, the best performers were LR (M=79 %, SD=10

%), LDA (M=80 %, SD=11 %), and LinearSVC (M=81 %, SD=9 %).

While LinearSVC was most accurate on average across all users,

for some it was not the most accurate model; allowing the system

to use the most accurate model for each user bumps average ac-

curacy to 85 % (SD=9 %) by mixing LinearSVC, SVC, LDA, and LR.

For object classification, the results were, respectively, LinearSVC

(M=84 %, SD=7 %), LR (M=86 %, SD=6 %), and LDA (M=87 %, SD=7

%). Comparison to other wrist-based sensing techniques is difficult

as they usually discriminate dynamic gestures (which we investi-

gate in the following section) instead of static grasps on objects, or

do not control for weight when discriminating held objects. Most

comparable might be the work of Fan, et al., [17] with EMG: they

achieve 85 % mean accuracy across 6 grasps similar to ours, al-

though without controlling object weight as we did. For object

recognition their weight-controlled study discriminating 4 sizes of

3 object types (spheres, cylinders, and plates) had 35 % recognition

accuracy; this is arguably a harder classification task than ours

since their different-sized objects are grasped in very similar ways.

Figure 8: The confusion matrix for LinearSVC’s grasp clas-
sification (left) showed generally satisfying to good results,
with the most confusion coming from the power and preci-
sion grasps on the sphere. The confusion matrix for LDA’s
object classification (right) indicates the classifier had a rea-
sonably strong ability to differentiate the objects.

Model tuning and the weight/density/material variation of real-

world objects would likely further improve our results, but they

indicate distinguishing static grasps on objects with reasonable

accuracy is possible. We changed our sensor after this study from

a 3 x 11 matrix to a 4 x 14 matrix; more, smaller pads improve

locational specificity in the data to capture subtler interactions.

4.2.2 Interaction Study. The more interesting corollary of “can we

distinguish static grasps on objects?” is, of course, “can we distin-

guish dynamic interactions with objects?” We examined how pose,

motion, and force can combine to represent a user’s interaction,

and whether we could sense subtle changes in these dimensions

from the wrist in a less-controlled scenario.

We focused on manipulative gestures (“whose intended purpose

is to control some entity by applying a tight relationship between

the actual movements of the gesturing hand/arm with the entity

being manipulated” [58])—essentially the non-mediated version of

“direct manipulation” [32] using real, physical objects. We looked

explicitly at unimanual interactions for which the hand’s pose and

motion (not location in space) uniquely determine state: these types

of interactions can be sensed with a single wristband.

Manipulative gestures are a sort of subcase of grasp, but we

turned from Feix’s grasp taxonomy to manipulation taxonomies,

specifically Elliott and Connolly’s “Dynamic Hand Movements”

[16] and Bullock, et al.,’s “Within Hand Prehensile Manipulation

Taxonomy” [7]. Both categorize single-handed prehensile manipu-

lations (i.e., hand/object interaction requiring more than one finger).

We merge them to examine the following (see Table 1):

• object contacts: moving (hand touchpoints slide or rotate

relative to the manipulated object) or fixed (touchpoints on

the manipulated object are stable) [7, 16]

• opposition structure used: whether the force opposing the

thumb is provided by the palm, finger pad(s), side of finger(s),

or alternating contacts of side(s) and pad(s) [16]

• motion type: translation or rotation [7, 16]

• axis of the opposition vector in the hand coordinate system:

X, Y, or Z [7, 16]

These dimensions can be extended from “describing the hand” to

“using the hand as an input” by linking them with Card, et al.,’s clas-

sic input device taxonomy [8]. It organizes input device components

by type and axis of movement (present in our manipulation taxon-

omy), and manipulation characteristics of the device; specifically

whether using it causes positional or force change (a characteristic

of the object being manipulated). Their final primitive is absolute
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Figure 9: Object interactions with their heatmap signatures.
Images from the usability study of Ubiquitous Controls.

or relative measurement: normally a physical characteristic of an

input device, we propose that in extending object manipulation to

interaction it is a software mapping problem, which we explore in

our application (Section 5).

Procedure:Users gathered objects from around their home with

slide, rock, twiddle, squeeze, stretch and tripod pinch affordances (see

Figure 9). For each interaction we suggested various objects. Users

wore their wristband on their dominant hand to perform prompted

transitions using their objects. Collections lasted 45–90 minutes.

We tested multiple states for each interaction: for all but rock we

collected training data on 3 states (min, middle, max). Due to rock’s
relatively larger range of motion, we collected 5 evenly-spaced

states forming a superset of (min, middle, max). Users were invited

to imagine a protractor or ruler aligned with their fingers to ensure

state repeatability within a given interaction. Most objects were

held entirely in the hand; for rock and twiddle the object (generally
a jar or bottle) was set on the user’s desk.

Recording: Users recorded 2-second transitions between each

pair of states for each range interaction. For the 5 interactions with

3 states we recorded each transition 3 times (

(
3

2

)
=6 transitions x 5

interactions x 3 repetitions = 90 recordings); for the 5-state range,

we recorded one full set of transitions (

(
5

2

)
=20 recordings). This led

to 110 total recordings per user. We used only the first and the last

frame of the transitions as state samples for training and testing;

this avoids overfitting consecutive frames, and we did not have

continuous ground truth for intermediate states. For the 3-state

ranges this yielded 36 samples (6 transitions x 3 repetitions x 2

frames), or 12 samples per state; for the 5-state range we got 40

samples (20 transitions x 1 repetition x 2 frames), or 8 samples per

state.

All transitions for an interaction were recorded together, but

object order and transition order within the interaction were ran-

domized. Across all interactions participants leveraged 10 unique

objects’ affordances, including reusing some objects for multiple

affordances (see Table 1).

To assess if adding IMU informationwould improve classification

results for dynamic interactions, we used an IMU 9DOF LSM9DS1

module with 3-axis accelerometer, 3-axis gyro, and 3-axis magne-

tometer in addition to the capacitive heatmap for this study. In

contrast to the device—which samples at 794 Hz—the IMU is sam-

pled at 952 Hz and multiple frames are batched if available. The

IMU outputs both raw 16-bit data signals and pre-processed Euler

angles, and we configure our accelerometer for ±2 д sensitivity for

greatest distinctiveness in subtle motions.

Participants: We recruited 10 users (2F, 8M) from within our

organization, ranging in age from 25–41 (Mdn=32, IQR=9.5), with

wrist circumferences 143–198mm (M=165.5mm, SD=18.4mm).

Results: Using the same basic classifiers per-user described in

the grasp study, we achieved 99 % average accuracy across users

discriminating interaction types and 90 % classifying interaction

state with LDA models. LDA achieves the best accuracies, which

notionally makes sense as LDA assumes normal data distribution

within and between classes—a natural fit with bodies and their

motion. Training on IMU data as well improved interaction state

classification accuracies only slightly (+ 0.25 % on average per

user and interaction). For interaction type discrimination, average

accuracies were 99 % with or without IMU data. We hence report

training results based solely on heatmap data in the following.

We evaluated the system’s discrimination ability for two classifi-

cation steps (classify interaction, classify state within interaction).

We performed cross validation on each of the 6 interactions (6-fold,

step 1) split by its number of states (step 2). Given the character-

istics of our collection, this led to 8-fold cross-validation for rock
and 12-fold cross-validation for each of the remaining 5 interac-

tions. Samples per state were evenly stratified, with 1 in each fold.

Thus we tested 8 classification tasks: 1 to discriminate the 6 inter-

action types, and 7 to discriminate range states within individual

interactions (6 3-state interactions + 1 5-state rock).
We trained on just 10 samples per interaction type, selected in a

stratified way across all states from the available sets of 36 or 40

samples. Our highmean accuracies of 99 % (SD=1%)within users are

similar to accuracies of other techniques inferring dynamic gestures

from biometric sensing at the wrist, although this comparison needs

to be considered with care as others use different gesture sets and do

not include object manipulation. For example, Tomo [83] achieves

97 % accuracy on 10 hand gestures, Interferi [33] 93 % on 11 gestures,

andMaereg et al.’s infrared-based approach [51] 98 % on 12 gestures,

all within-users.

Models to identify state in the 5 3-state interactions trained on

10/12 collected samples per state, while for the two versions of rock
we had fewer recordings available: these within-interaction state

classifiers trained on just 6/8 collected samples per state. While

3-state gestures performed uniformly well across users with accura-

cies from 82–93 %, rock really excelled, with average classification

accuracy 97 % (see Table 2). Rock has a larger interaction range

and includes wrist rotation—which registers strongly on our proto-

type due to broad motion of underlying anatomy—while in other

interactions the wrist is more stable.

To assess if our technique performs differently for people with a

higher BMI due to fat layers on the wrist, we correlated recogni-

tion accuracies and wrist size (a proxy for user BMI). Each of our

studies had users with wrist circumference >195 mm but we saw

low correlation between size and accuracy (r2 values: .04 (force),
.02 (grasp), .02 (shape), .02 (interaction)).

5 UBIQUITOUS CONTROLS–LEVERAGING
AFFORDANCES OF EVERYDAY OBJECTS TO
CONTROL VIRTUAL RANGE INPUTS

We see two major opportunities to apply understanding of object

properties and interactions with objects: 1) implicit activity recog-

nition to infer user behavior and everyday activities like “drinking

water from a glass” and 2) explicit gesture input to precisely control
a virtual system.

In this paper, we focus on the latter. We present Ubiquitous Con-

trols, a unifying interactive system based on the studies in Section 4,
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Interaction Contacts Opposition Motion Axis Manipulation Objects Used
Palmar slide Fixed Palm Translation Y Position Box cutter, 2 playing cards

Rock Fixed Pad Rotation Z Position Jar with lid

Squeeze Fixed Palm Translation X Force

Plastic jar, plastic bottle,

stuffed animal, stress ball

Stretch Fixed Finger Translation X Force Rubber band, hair tie

Tripod pinch Fixed Fingers Translation X Position Pair of scissors

Twiddle Moving

Alternating

Rotation Z Position Bottle, toothpaste tube

Pad/Side

Table 1: Interaction descriptors for gestures explored in this work. Names from Elliott & Connolly [16], except tripod pinch.
All interactions are illustrated in Figure 9.

Gesture Rock Rock (5) Slide Squeeze Stretch Tripod Pinch Twiddle
Accuracy 97 % 82 % 90 % 89 % 89 % 93 % 89 %

Table 2: Each gesture tested in our interaction study and the classification accuracy achieved by LDA discriminating between
its states, averaged across all 10 users. All gestures have 3 states except for rock (5).

which leverages the well-understood affordances of unaugmented

everyday objects to provide guidance and haptic feedback for pre-

cise control of interactions. Many manipulative gestures are physi-

cally constrained to 1-dimensional motions within two extremes

defined by an object’s affordance (e.g., opening a pair of scissors,

or sliding a box cutter), which makes them map well to virtual

1-dimensional inputs, like sliders or dials.

The system works by first differentiating between a variety of

dynamic hand interactions with objects and then regressing the

position within the range of the detected interaction. We developed

a machine learning pipeline to run alongside the dedicated data

collection software described in Section 3.4.

We now provide an interaction scenario, system overview, and

evaluation with 8 participants controlling 3 widgets.

5.1 Using Ubiquitous Controls
A user reading a book on their couch wants to turn their music

down. Instead of standing or searching for their phone, they perform

a distinctive gesture to activate the Ubiquitous Controls system and

twiddle the lid of their water bottle, at hand, counterclockwise to

reach the desired volume (see Figure 10).

For the interaction to work, the user needs to configure their

water bottle to be an input device; this task occurs only once per

object, on-demand or ahead of time. They collect samples of their

hand twiddling the cap to its extremes (i.e., far left, far right, centre):

this data collection takes approximately 1 minute. The data are sent

to a classification optimizer, which compares several machine learn-

ing configurations to select two models. One separates “twiddling
a bottle cap” from other recorded controls, like “squeezing a toy” or

“sliding a hair dryer selector.” The second regresses the position of

the bottle cap interaction based on the three recorded states.

Aftermodel training and selection, the system awaits the interaction-

triggering gesture by analyzing live IMU information. Once de-

tected, wrist profile and IMU data are sent to the first classifier

to determine interaction, and to the interaction-specific model to

regress range position. Finally, output is sent to the appropriate

application: in this case, it adjusts the music player’s volume level.

5.2 Software Implementation
Based on the results of our Interaction Study, for range position

regressionwe collect 1-second recordings of holds in three positions:

min, middle, and max.

Our training script collects the output csvs and extracts features.

Cross-fold validation, per user, determines the best model. The live

script takes this model and runs live data through it, outputting

regression or classification information. Both scripts are written in

Python with scikit-learn [56]. Our two model stages (1) classify

high-level interactions and (2) regress a particular range location.

We use raw heatmap, accelerometer, and gyroscope values com-

bined with 23 statistical features including z-score, mean, and stan-

dard deviation. As in the study, we compare LDA, CART, LR, NB,

and LinearSVC classifiers for gesture classification and use a linear

regression model for range interpolation. We use standard config-

urations for all models. Trained models are n-fold cross-validated

(where n=number of samples/number of trained states): the best

classifier and the linear regression model are stored for live use.

In live mode, we detect a “double-flip” gesture, a placeholder

activation trigger originally designed as a robust input-delimiter

for mobile motion-based interactions [61], by thresholding the IMU

gyro magnitude; the timeout for completing both flips is 300ms.

Our system then constantly predicts interaction type and position

until detecting the next “double-flip” gesture, which deactivates

the interaction mode. The stored classifier determines the current

interaction using single heatmap+IMU frames (see Figure 9 for

example signatures).

We smooth regressed range position with an empirically-tuned

1-Euro Filter [9]. The live classification/regression script samples

data from the band at ≈60 Hz and makes constant predictions

in real time: we have achieved this on a variety of desktop and

laptop computers, including a 2014 i7-4790 processor with 32GB of

memory.
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Figure 10: The Ubiquitous Controls system: a user generates offline training data by recording the middle and extremes of an
interaction. A script extracts features, trains several models, and selects and saves the best one. In online use, we look for a
“double flip” activation gesture, then send data to saved models. We classify interaction type, then regress range position and
smooth output. Finally, data is sent to an application.

Extracted data are sent to applications as input. We purpose-

built several widgets for Ubiquitous Controls, but with Sikuli [80]

or other end-user programming techniques it would be possible to

integrate such inputs into more applications.

5.3 Evaluation
We assessed the usability of our Ubiquitous Controls system in a

real-time scenario with a study in which 8 users interacted with

three widgets. Our primary goal was testing a live instance of

our pipeline and whether it was functional to enable ubiquitous,

continuous control input using affordances of everyday objects.

Our hypothesis was that:

Hypothesis 1. The Ubiquitous Controls pipeline enables users to
input interpolated range values within 1.5s

This is intended to mirror prior findings that users can take

1.172 s–1.233 s from stimulus to target acquisition using a trackpad

with their dominant and non-dominant hand [36], or that a typist

using an unfamiliar keyboard can require 1.2 s per key entry [50].

Participants completed input tasks in median 1.2 s per prompt,

providing evidence for Hypothesis 1.

Asked about their preferred interaction technique, 3 users men-

tioned Ubiquitous Controls, 3 preferred freehand gestures, and 2

declared it depends upon the situation. Users reported state re-

producibility and haptic feedback as favorable aspects of object-

supported interactions, suggesting our proposed interaction tech-

nique is a good alternative to freehand gestures for some kinds of

input.

5.3.1 Procedure. We asked users to gather interactive objects from

their homes; we provided themwith a recommendation list illustrat-

ing different affordances. In contrast to the Interaction Study, we

did not require specific affordances: users were explicitly allowed

to use any objects they wanted as input controls. Studies lasted

up to 60 minutes, exploring 3 tasks to be performed using both

interaction methods (object-supported interactions and freehand

gestures). Each participant wore a different wristband of the kind

described in Section 3.3. A participant wore the same wristband for

both input gesture techniques. The task consisted of controlling 3

widgets: a horizontal slider to “control the seek position of a video,”

a zoomable canvas to “control the zoom level of a map,” and a knob

to “control the volume of a stereo” (see Figure 11). Before each

task, the experimenter described the widget and required users to

define a freehand or object-supported gesture to control it, with

users eventually doing both for all 3 widgets. The overall widget x

interaction method configurations were randomized.

Every task consisted of five phases: a definition of the gesture’s

3 distinct states (max, min, and middle), a data collection, an instan-

taneous training, an experimentation phase where users could try

out their trained model on the widget, and a test phase where users

input prompted values as quickly as possible.

Based on the findings of the Interaction Study that 10 samples

per state provided satisfying classification accuracies to discrim-

inate 6 gestures and 3 states within each gesture, we had users

collect 30 training samples per task (3 states x 10 repetitions). The

collection comprised 1s-long static poses rather than transitions,

and lasted roughly one minute for each 30-sample set. The user

then started a script to train a model with these samples, forcing

them to put down their object or change their hand posture prior to

the experimentation and test phases. The training script generated

a linear regression model, which interpolated values within the

range bounded by max and min; this permitted a richer, more con-

tinuous interaction compared to the 3-state classification models

from the Interaction Study. The output of the regressor was not

smoothed or post-processed, but was used raw to map inputs to

the virtual control range. Prior to the recorded test phase, the user

experimented with their trained model and its mapping to the 2D

graphical widget for a maximum of two minutes. During this phase,

if a user was not able to perform controlled manipulations (i.e., all

inputs were regressed as “out of range,” either above the trained

maximum or below the trained minimum), we allowed them to

recollect data and train again. The test phase consisted of a given

number of virtual control value prompts to be matched within two

minutes. Each prompt appeared the same number of times in a

randomly-shuffled sequence. Holding the correct value for a fixed

period of time triggered a transition between prompts. For the knob

and zoomable canvas, users held 25 prompts for .5s each; with vi-

sual prompts and regressed model output both snapping to 1/5th

of the overall input range. For the horizontal slider, users held 50

different prompts for .5s each, where each prompt was represented

by an interval of 1/10th of the overall input range. Regressed values

were presented continuously on the UI (see Figure 11). Performance

metrics and sensed wristband data were captured during the study.

5.3.2 Participants. We recruited 8 users (1F, 7M) within our institu-

tion. Their ages ranged from 24–45 (Mdn=33.5, IQR=5.75) and their

wrist circumferences from 152–210mm (Mdn=170.5mm, SD=19.4mm).
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Figure 11: We used 3 UI widgets in the usability study to as-
sess performance of our system: a horizontal slider (A), a
zoomable canvas (B), and a rotary knob (C). For the slider
the prompts were given in intervals and the output of the
regressor was continuous (not snapped). The canvas and the
knob featured visual “snapping” of both prompts and inputs
to 5 evenly-spaced locations.

All but one of the studies was performed remotely, with the in-

person study conducted in a physically-distanced manner outdoors.

5.3.3 Design. We recorded 23 trials for object-supported inter-

actions (3 widgets x 7 users + 2 widgets x 1 user) and 22 trials

for freehand gestures (3 widgets x 6 users + 2 widgets x 2 users).

Due to timing and technical issues, 2 users could not complete the

full study; one completed 2 widgets per interaction method and

the other did not perform the final freehand interaction. In total,

through 45 trials our users leveraged 13 unique object types, all 6

unique object interactions that we tested in our Interaction Study,

and 8 unique freehand gestures for their controls. Of those 45 trials,

the data collection and model training phases were repeated for

4 due to poor system performance during user experimentation.

We define one complete test phase trial as 25 completed prompts

within 120 seconds; this truncated the horizontal slider conditions

from 50 prompts to balance our analysis.

5.3.4 Results.

Quantitative. With 407 matched prompts across all three wid-

gets, most users could successfully control all widgets using object-

supported interactions. For 3 users input for the range slider with 10

buckets did not work during the study; without regression smooth-

ing the input jitter made a .5 s hold challenging. Users matched

average 21.4 / 25 prompts (Mdn=25, SD=6.1) within the time limit,

for interactions with at least one matched prompt. For such trials

all but 2 per widget were finished in time.

We found strong support for Hypothesis 1: median input time

with Ubiquitous Controls was 1.2s, with 58 % of prompts completed

within 1.5 s (not including the required .5 s hold). As with other

devices, more practice with the inputs and their behaviour would

likely reduce input time. Though the slider had twice as many

buckets as other widgets, no interaction was significantly slower

or faster across trials with ≥1 matched prompt.

Mean classification accuracy for the 3 range states was 92 %

(Mdn=97 %, SD=9 %), similar to the Interaction Study. We also in-

cluded IMU data alongside heatmap data for training and testing.

Similar to the Interaction Study, removing IMU snapshots reduces

performance only slightly (-0.41 % on average per user in post hoc

analysis). Mean range interpolation error was 16 % (Mdn=10 %,

SD=14 %), similar to Interferi [33]. This error also represents user

interpretation error: users estimated state positions during data col-

lection and we had no ground truth. For interaction discrimination,

the mean accuracy of 84 % (84 % without IMU, Mdn=99 %, SD=28 %)

was lower than in the Interaction Study; as some participants used

Figure 12: Users in our Ubiquitous Controls evaluation
had various interesting interaction strategies. One used an
unpowered oscilloscope (A). Another used both hands to
precision-set a combination lock (B). Another precision in-
put was a non-digital pair of brass calipers (C). One user’s
“squeeze” object, a thin-walled plastic cup, broke through
use as an input (D).

the same object-supported interactions for different interaction

tasks, we believe the median of 99 % is a more appropriate metric.

Users were also able to control the widgets using freehand

gestures; there were no significant differences between object-

supported and freehand gestures in input time, number of matched

prompts, model fit, or interaction type discrimination accuracy.

Qualitative. Participants’ preferences about the interaction meth-

ods weremixed: three users preferred object-supported interactions,

three preferred freehand gestures, and two declared it depends on

the situation. Many users highlighted state reproducibility and

haptic feedback, saying the “force made it easier to control” (P7)

pinching with a rubber band versus freehand, or that feedback from

a screw-top lid “lets you know where you are on the thing” (P4).

Many users explicitly mapped an object interaction or gesture

to a widget’s visual appearance or existing use in the wild. Users

mentioned “if it’s a video player, I’d like it to be linear” (P4), or

“I’ve turned the knob of a stereo, so I know that a bottle cap is

more consistent with the experience [than a linear control]” (P3).

Our system’s treatment of object-supported interactions did always

not map well to users’ understanding of how inputs work. For

example, P1 used a knob on an unpowered oscilloscope as an input:

in training, they twisted using mainly their wrist, and in testing

with mainly their fingers. In normal use, these methods behave

identically, but in our system they do not (see Figure 12A).

On using objects as inputs, one user suggested they would carry

a “collection of favourite objects that were comfortable to use,” or

a multi-function input object (e.g., fidget cube) designed for this

type of interaction (P6). Conversely, another mentioned that any

object they have has to be “worthy of carrying with me,” suggesting

that an object only for input would not be worth the space in their

bag or pockets (P2). In the end, it seems both object-supported and

freehand gestures have a role in pervasive interaction, but what

defines their roles requires further study.

6 DISCUSSION AND LIMITATIONS
We have demonstrated inference of object properties using capaci-

tive topographical changes at the wrist, including an end-to-end

system leveraging them for explicit ubiquitous input. As demon-

strated through our studies on force, grasp, and interaction, tapping

into our body’s own actuation systems to detect isometric tension,

pose, and movement re-imagines the hand as a sensor instead of

integrating electronics into every object we wish to imbue with
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interaction. This also leads to the challenge of anatomical differ-

ences between users, which we showed extends beyond wrist cir-

cumference to wrist profiles. We now summarize challenges and

opportunities that surfaced in executing this research.

6.1 Performance
While 3-state classification and 5-state interpolation with our proto-

type pipeline was usable, users’ experiences with 10-state interpo-

lation were mixed, and 4.9 % of successful object-mediated inputs

with Ubiquitous Controls took over 10 seconds to complete. We

anecdotally noted these issues were often due to regression insta-

bility. In the study, we did not filter regressed data: smoothing with

an empirically-tuned 1-Euro Filter [9] has dramatically improved

system usability. A post hoc analysis on recorded frames from the

study reduced mean “input” times by .21 s, even accounting for lag

introduced by smoothing, and 1 percentage point fewer trials took

>10s to complete. The filter reduced regressor noise, but further

work is required to ensure robust, continuous, and precise input.

Our sensor design evolved throughout the work and we used

an IMU for some experiments. Post hoc analysis revealed IMU

contribution to accuracy was minor (+.25 % in the Interaction Study,

+.41 % in the Application Study), and future work can explore new

capacitive matrix geometries and densities to improve accuracy.

While our first study shows anatomical differences between

people, we believe it possible to build a population-level machine-

learning filter to separate arm/wrist motion and position from finger

motion and position in order to better match users’ mental models

of how Ubiquitous Controls inputs work and to make interactions

transfer across users. This would require significant data collections

on people of varying wrist characteristics and is outside the scope

of the present contribution.

6.2 Midas Touch
As computation moves to the body and everyday objects may serve

both analog and digital functions, we encounter the so-called “Mi-

das Touch” problem, where a system must distinguish between

functional interaction and intentional input with an object [13]. In

our prototype system, we use double-flip to demarcate these modes,

but further exploration may find contextual or physiological (e.g.,

EEG) signals to distinguish whether a user twisting a bottle lid

intends to take a drink or control their podcast. The ideal solution

does not require a specific initiation gesture, but this is depen-

dent upon the available cues. Multi-modal techniques like voice or

eye-tracking might be required to disambiguate functional inter-

action and intentional input. Without extra modalities, a system

could track events before and after recognition to disambiguate

usage, however this introduces input delays as the system waits for

differentiating events after recognizing an action.

6.3 Beyond Shape and Force
Better understanding the objects a user is interacting with is an ob-

vious future direction that builds on the primitives of shape, force,

and gesture. Force combined with pose and motion may reveal

surface hardness, springiness, or mechanical stickiness. Touch on a

held object from another hand may also be visible [82]. Taking mo-

tion’s derivative, acceleration profiles during object interaction may

correlate to weight, centre of mass, or change in weight distribution

(e.g., if the object contains liquid).

6.4 Reuse and Assemblage of Other Devices
A corollary of re-purposing existing object properties is reprogram-

ming existing input devices for new uses. After all, a disconnected

game controller is just a high-quality fidget cube: both are primed

with interesting physical mappings. A user could map the bright-

ness of their room to the roll of amousewheel, adjust which cooktop

burner is active by thumbing a joystick, or reuse a favourite PS/2

peripheral with a new machine without an adapter.

For accessibility reasons, allowing a user to reuse an object or

input device they are familiar with for new and arbitrary interac-

tions is a boon. Relocating a component’s sensing from the device

to the user also enables a new way to prototype input devices: as-

semblage of existing affordances held together by clay or tape is

easy to reconfigure and immediately test, similar to the concept of

Makers’ Marks [62].

6.5 Dynamic and Configurable Mapping
The distributed nature of input and output also introduces chal-

lenges of mapping, for which we need new paradigms in end user

programming that allow tying a specific input to a specific output.

All our tested interactions include explicitly-coded mappings,

with theminimum value of a physical range permanently connected

to the minimum value of a digital range, and all interactions are

1:1. More subtlety may be desirable: the abilities to map sub-ranges,

to dynamically map physical and digital inputs, or to choose a

different gesture according to the situation (working out vs. lying

in bed) each contribute to a personal mapping experience where

the interface bends to meet the user’s intentions and is not bounded

by virtual inputs or specialized input devices.

Meaningful, pervasive mapping techniques with Ubiquitous Con-

trols also open opportunities for more hygienic and personal inter-

actions with public displays or infrastructure: one’s own items can

be leveraged in lieu of a public touchscreen or other input device.

7 CONCLUSION
We have proposed a capacitance-based sensing method to extract

the surface profiles of anatomical structures in a user’s wrist; fur-

ther we described our prototype implementation of a wristband

using this sensing technique. We discussed the implications of the

actual anatomy being sensed: that tendon and muscle tension, pose,

and motion in the location of our wristband can be mapped to,

respectively, force, grasp, and interaction of the hand and fingers

with external objects. We demonstrated these mappings through

several atomic studies. Finally, we describe Ubiquitous Controls, an

end-to-end system that uses these capabilities to let users control

virtual range inputs by interacting with unaugmented objects, and

we conclude with a discussion of the implications and opportunities

of using the hand as a sensor. We anticipate that using anatomy to

understand interactions with and properties of everyday objects

will provide a powerful framework for ubiquitous computing.
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